Answer:
320N
Explanation:
The magnitude of the torque required is expressed using the formula;
T = Fr sin theta where;
F is the force
r is the radius = 9cm = 0.09m
theta is the angle of inclination = 8 degrees
Torque T = 4Nm
Substitute the given values and get F
4 = F(0.09)sin8
4 = 0.0125F
F = 4/0.0125
F = 320N
Hence the magnitude of the force required when the force is applied at 8 degrees to the wrench is 320N
6,5 6,4 6,3 6,2 6
if you know,1
Answer:
U = 0.413 J
Explanation:
the potential energy between two charges q1 and q2 is given by the following formula:
(1)
k: Coulomb's constant = 8.98*10^9 NM^2/C^2
q1: first charge = 4.6 μC = 4.6*10^-6 C
q2: second charge = 1.0 μC*10^-6 C
r: distance between charges = 10.0 cm = 0.10 m
You replace the values of all variables in the equation (1):

Hence, the energy between charges is 0.413 J
The Kelvin scale has no negatives on it.
Zero Kelvin is 'Absolute Zero', and nothing can get colder than that.
The ideal gas constant is a proportionality constant that is added to the ideal gas law to account for pressure (P), volume (V), moles of gas (n), and temperature (T) (R). R, the global gas constant, is 8.314 J/K-1 mol-1.
According to the Ideal Gas Law, a gas's pressure, volume, and temperature may all be compared based on its density or mole value.
The Ideal Gas Law has two fundamental formulas.
PV = nRT, PM = dRT.
P = Atmospheric Pressure
V = Liters of Volume
n = Present Gas Mole Number
R = 0.0821atmLmoL K, the Ideal Gas Law Constant.
T = Kelvin-degree temperature
M stands for Molar Mass of the Gas in grams Mol d for Gas Density in gL.
Learn more about Ideal gas law here-
brainly.com/question/28257995
#SPJ4