1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SpyIntel [72]
2 years ago
13

Sally and Suzy are moving into their first college dorm together. They are loading all their furniture onto a truck with a ramp

that is 8 feet long.
How far is the back of the truck off the ground if the mecanical advantage of this ramp is 2?


A) .25 ft
B) 4 ft
C) 8 ft
D) 16 ft​
Physics
1 answer:
Ksenya-84 [330]2 years ago
6 0

Answer:

B

Explanation:

Formula

Mechanical advantage = length of the ramp / height

Givens

Length of the ramp = 8

Mechanical advantage = 2

height = ?

Solution

2 = 8feet / height                                  Multiply both sides by height

2* height = 8 feet * height / height      Combine

2* height  = 8 feet                                 Divide by 2

2*height/2 = 8 feet/2                              

height = 4 feet.

You might be interested in
How can a organization encourage total person development among their employees.
Sedbober [7]

Answer:

Paying for employees seminars and workshops related to their careers

Explanation:

To motivate personal development among employees, several things can be done. Among them, giving employees chance to present their own solutions to problems, exposing the employees to several global challenges and how to handle them, paying for employees seminars and workshops related to their own careers for professional development among other things.

8 0
3 years ago
What does the signal word then accomplish in these sentences
zlopas [31]
What are the sentences
6 0
3 years ago
Read 2 more answers
We are designing a crude propulsion mechanism for a science fair demonstration. One of our team members stands on a skateboardth
Scrat [10]

Answer:

greater speed will be obtained for the elastic collision,

Explanation:

To answer this exercise we must find the speed that the sail acquires after each impact.

Let's start by hitting a ball of clay.

The system is formed by the candle and the clay balls, therefore the forces during the collision are internal and the moment is conserved.

initial instant. before the crash

         p₀ = m v₀

where m is the mass of the ball and vo its initial velocity, we are assuming that the candle is at rest

final instant. After the crash

the mass of the candle is M

         p_f = (m + M) v

the moment is preserved

          p₀ = p_f

          m v₀ = (m + M) v

          v = \frac{m}{m+M} \ v_o

for when n balls have collided

          v = \frac{m}{n \ m + M}  v₀

Now let's analyze the case of the bouncing ball (elastic)

     

initial instant

        p₀ = m v₀

final moment

        p_f = m v_{1f} + M v_{2f}

        p₀ = p_f

        m v₀ = m v_{1f} + M v_{2f}

       m (v₀ - v_{1f}) = M v_{2f}

this case corresponds to an elastic collision whereby the kinetic energy is conserved

        K₀ = K_f

        ½ m v₀² = ½ m v_{1f}² + ½ M v_{2f}²

        v₁ = v_{1f}            v₂ = v_{2f}

        m (v₀² - v₁²) = M v₂²

let's use the identity

         (a² - b²) = (a + b) (a-b)

we write our equations

         m (v₀ - v₁) = M v₂                       (1)

         m (v₀ - v₁) (v₀ + v₁) = M v₂²

let's divide these equations

         v₀ + v₁ = v₂

Let's look for the final speeds

we substitute in equation 1

          m (v₀ - v₁) = M (v₀ + v₁)

          v₀ (m -M) = (m + M) v₁

          v₁ = \frac{m-M}{m + M}   v₀

we substitute in equation 1 to find v₂

            \frac{M}{m}  v₂ = v₀ -  \frac{m-M}{m+M}   v₀

            v₂ = \frac{m}{M}  ( 1 - \frac{m-M}{m+M} ) \ v_o

            v₂ = \frac{m}{M}  ( \frac{2M}{m+M} ) \ \ v_o

            v₂ = \frac{2m}{m +M}  \ v_o  

Let's analyze the results for inelastic collision with each ball that collides with the sail, the total mass becomes larger so the speed increase is smaller and smaller.

In the case of elastic collision, the increase in speed is constant with each ball since the total mass remains invariant.

Consequently, greater speed will be obtained for the elastic collision, that is, the ball will bounce.

8 0
3 years ago
The form of energy given off by the vibrating strings of the violin is? A. Electrical Energy B. Potential Energy C. Radiant Ener
S_A_V [24]

Answer:

D . Sound energy

Explanation:

When the strings of a violin vibrate it produces sound which is sound energy. Due to the vibration of the strings the air present near the strings also vibrate in resonance with the strings. This compreesion and decompression's produced in the air is nothing but the sound. So the form of energy given off by the vibrating strings of the violin is Sound energy.

6 0
3 years ago
You stand on a bridge above a river and drop a rock into the water below from a height of 25 m. (Assume no air resistance)
Ilia_Sergeevich [38]

PART a)

here when stone is dropped there is only gravitational force on it

so its acceleration is only due to gravity

so we will have

a = g = 9.8 m/s^2

Part b)

Now from kinematics equation we will have

y = v_i t + \frac{1}{2} at^2

now we have

y = 25 m

so from above equation

25 = 0 + \frac{1}{2}(9.8 )t^2

t = 2.26 s

Part c)

If we throw the rock horizontally by speed 20 m/s

then in this case there is no change in the vertical velocity

so it will take same time to reach the water surface as it took initially

So t = 2.26 s

Part D)

Initial speed = 20 m/s

angle of projection = 65 degree

now we have

v_x = vcos\theta

v_x  = 20 cos65 = 8.45 m/s

v_y = vsin\theta

v_y = 20 sin65 = 18.13 m/s

PART E)

when stone will reach to maximum height then we know that its final speed in y direction becomes zero

so here we can use kinematics in Y direction

v_f - v_y = at

0 - 18.13 = (-9.8) t

t = 1.85 s

so it will take 1.85 s to reach the top

5 0
3 years ago
Other questions:
  • What are other countries public reaction to climate change?
    10·1 answer
  • A small particle starts from rest from the origin of an xy-coordinate system and travels in the xy-plane. Its acceleration in th
    12·2 answers
  • What is the difference between work done by the gravitational force on descending and ascending objects?
    6·1 answer
  • A hockey puck is pushed by a stick with a force of 750 newtons. The puck travels 2.0 meters in 0.30 seconds. How powerful is the
    10·2 answers
  • How does uniform motion relate to velocity and acceleration?
    7·1 answer
  • On your first trip to Planet X you happen to take along a 290 g mass, a 40-cm-long spring, a meter stick, and a stopwatch. You'r
    12·1 answer
  • A ball is thrown with a velocity of 35 meters per second at an angle of 30° above the horizontal. which quantity has a magnitude
    7·1 answer
  • The international space station (ISS) orbits the earth with a velocity 7.6 km/s. How much energy is required to lift a payload o
    13·1 answer
  • An object is moving in a straight line with a constant acceleration. Its position is measured at three different times, as shown
    5·1 answer
  • Two gliders on an air track collide in a perfectly elastic collision. Glider A has a mass of 1.1 kg and is initially travelling
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!