1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andre45 [30]
3 years ago
7

Two particles each of mass m and charge q are suspended by strings of length / from a common point. Find the angle e that each s

tring makes with the vertical. (Assume 0 is small so sin 0~tan 0~0.) [Hint: consider the vertical and horizontal components of the forces acting on each particle.]

Physics
1 answer:
ozzi3 years ago
7 0

Answer:

\theta =\left (\frac{kq^{2}}{4L^{2}\times mg}  \right )^{\frac{1}{3}}

Explanation:

Let the length of the string is L.

Let T be the tension in the string.

Resolve the components of T.

As the charge q is in equilibrium.

T Sinθ = Fe       ..... (1)

T Cosθ = mg     .......(2)

Divide equation (1) by equation (2), we get

tan θ = Fe / mg

tan\theta =\frac{\frac{kq^{2}}{AB^{2}}}{mg}

tan\theta =\frac{\frac{kq^{2}}{4L^{2}Sin^{\theta }}}}{mg}

tan\theta =\frac{kq^{2}}{4L^{2}Sin^{2}\theta \times mg}

tan\theta\times Sin^{2}\theta =\frac{kq^{2}}{4L^{2}\times mg}

As θ is very small, so tanθ and Sinθ is equal to θ.

\theta ^{3} =\frac{kq^{2}}{4L^{2}\times mg}

\theta =\left (\frac{kq^{2}}{4L^{2}\times mg}  \right )^{\frac{1}{3}}

You might be interested in
A tube 1.20 m long is closed at one end. A stretched wire is placed near the open end. The wire is 0.350 m long and has a mass o
Ksju [112]

Answer:

71.4583 Hz

67.9064 N

Explanation:

L = Length of tube = 1.2 m

l = Length of wire = 0.35 m

m = Mass of wire = 9.5 g

v = Speed of sound in air = 343 m/s

The fundamental frequency of the tube (closed at one end) is given by

f=\frac{v}{4L}\\\Rightarrow f=\frac{343}{4\times 1.2}\\\Rightarrow f=71.4583\ Hz

The fundamental frequency of the wire and tube is equal so he fundamental frequency of the wire is 71.4583 Hz

The linear density of the wire is

\mu=\frac{m}{l}\\\Rightarrow \mu=\frac{9.5\times 10^{-3}}{0.35}\\\Rightarrow \mu=0.02714\ kg/m

The fundamental frequency of the wire is given by

f=\frac{1}{2l}\sqrt{\frac{T}{\mu}}\\\Rightarrow f^2=\frac{1}{4l^2}\frac{T}{\mu}\\\Rightarrow T=f^2\mu 4l^2\\\Rightarrow T=71.4583^2\times 0.02714\times 4\times 0.35^2\\\Rightarrow T=67.9064\ N

The tension in the wire is 67.9064 N

7 0
3 years ago
Type the correct answer in the box. Round your answer to the nearest tenth. Dina has a mass of 50 kilograms and is waiting at th
katen-ka-za [31]
I guess once you input the numbers into the correct places into the equation it would look like this :
PE = 50 * 9.8 * 5.0
PE = 2,450
6 0
3 years ago
Read 2 more answers
a stone is thrown upward with a velocity of 72km/hr ,if air resistance is neglected,find the maximum height travelled by it and
Rom4ik [11]

Answer:

1 | \sqrt[46 \times  =  = ]{?} |

7 0
3 years ago
(a) What is the escape speed on a spherical asteroid whose radius is 500. km and whose gravitational acceleration at the surface
navik [9.2K]

Answer:

a) v= 1732.05m/s

b) d=250000m

c) v= 1414.214m/s

Explanation:

Notation

M= mass of the asteroid

m= mass of the particle moving upward

R= radius

v= escape speed

G= Universal constant

h= distance above the the surface

Part a

For this part we can use the principle of conservation of energy. for the begin the initial potential energy for the asteroid would be U_i =-\frac{GMm}{R}.

The initial kinetic energy would be \frac{1}{2}mv^2. The assumption here is that the particle escapes only if is infinetely far from the asteroid. And other assumption required is that the final potential and kinetic energy are both zero. Applying these we have:

-\frac{GMm}{R}+\frac{1}{2}mv^2=0   (1)

Dividing both sides by m and replacing \frac{GM}{R} by a_g R

And the equation (1) becomes:

-a_g R+\frac{1}{2} v^2=0   (2)

If we solve for v we got this:

v=\sqrt{2 a_g R}=\sqrt{2x3\frac{m}{s^2}x500000m}=1732.05m/s

Part b

When we consider a particule at this surface at the starting point we have that:

U_i=-\frac{GMm}{R}

K_i=\frac{1}{2}mv^2

Considering that the particle is at a distance h above the surface and then stops we have that:

U_f=-\frac{GMm}{R+h}

K_f=0

And the balance of energy would be:

-\frac{GMm}{R}+\frac{1}{2}mv^2 =-\frac{GMm}{R+h}

Dividing again both sides by m and replacing \frac{GM}{R} by a_g R^2 we got:

-a_g R+\frac{1}{2}v^2 =-\frac{a_g R^2}{R+h}

If we solve for h we can follow the following steps:

R+h=-\frac{a_g R^2}{-a_g R+\frac{1}{2}v^2}

And subtracting R on both sides and multiplying by 2 in the fraction part and reordering terms:

h=\frac{2a_g R^2}{2a_g R-v^2}-R

Replacing:

h=\frac{2x3\frac{m}{s^2}(500000m)^2}{2(3\frac{m}{s^2})(500000m)-(1000m/s)^2}- 500000m=250000m

Part c

For this part we assume that the particle is a distance h above the surface at the begin and start with 0 velocity so then:

U_i=-\frac{GMm}{R+h}

K_i=0

And after the particle reach the asteroid we have this:

U_f=-\frac{GMm}{R}

K_f=\frac{1}{2}mv^2

So the balance of energy would be:

-\frac{GMm}{R+h}=-\frac{GMm}{R}+\frac{1}{2}mv^2

Replacing again a_g R^2 instead of GM and dividing both sides by m we have:

-\frac{a_g R^2}{R+h}=-a_g R+\frac{1}{2}v^2

And solving for v:

a_g R-\frac{a_g R^2}{R+h}=\frac{1}{2}v^2

Multiplying both sides by two and taking square root:

v=\sqrt{2a_g R-\frac{2a_g R^2}{R+h}}

Replacing

v=\sqrt{2(3\frac{m}{s^2})(500000m)-\frac{2(3\frac{m}{s^2}(500000m)^2}{500000+1000000m}}=1414.214m/s

3 0
3 years ago
What happens that a light ray if it incident on a reflective surface along the normal
evablogger [386]
Most likely it will reflect off the surface and create a fire
6 0
3 years ago
Other questions:
  • Nuclear explosions can be ______ of times more powerful than the largest conventional weapon. A. Hundreds B. Millions C. Thousan
    11·1 answer
  • What's the symbol for an ionized gallium atom?
    13·1 answer
  • At time t = 0 an elevator starts moving upward from the ground at a constant speed vo. At a later time t = T1 = 2.35s a marble i
    13·1 answer
  • 1. The thermal convection that drives plate motion is caused by
    10·1 answer
  • Electric charges that are different
    7·2 answers
  • Where is the magnetic south pole compared to the geographical north pole?
    8·1 answer
  • The diagram shows the forces acting on an object at an instant of time. Which of the following statements about the forces is tr
    7·1 answer
  • A block of copper with mass 0.500 kg is heated to 400. degrees Celsius from 290. degrees Celsius. The specific heat capacity of
    8·1 answer
  • A ball is Thrown Upward with An initial velocity of 30 m/s , How high does it rise from the ground when the ball reaches the hig
    5·1 answer
  • If a car travels 125 miles in 2.5 hours, what was the cars average speed over the 2.5 hours?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!