The refractive index of a material is a dimensionless number that describes how fast light travels through the material. It is defined as n={\frac {c}{v}}, where c is the speed of light in vacuum and v is the phase velocity of light in the medium.
the ratio of the velocity of light in a vacuum to its velocity in a specified medium.
Answer:
Work done in both the cases will be same
Explanation:
As we know that the work done against gravity is given as

here we know that gravitational force is a conservative force and the work done against gravitational force is independent of the path
So here the work done by person to move the object between two different heights will be independent of the path they choose
So for the first person and second person will be same in both the cases because the height through which the boxes are transferred will be same in both the cases
Let the sphere is having charge Q and radius R
Now if the proton is released from rest
By energy conservation we can say



now take square root of both sides

so the proton will move by above speed and
here Q = charge on the sphere
R = radius of sphere

Answer:
Gases are easily compressed. We can see evidence of this in Table 1 in Thermal Expansion of Solids and Liquids, where you will note that gases have the largest coefficients of volume expansion. The large coefficients mean that gases expand and contract very rapidly with temperature changes. In addition, you will note that most gases expand at the same rate, or have the same β. This raises the question as to why gases should all act in nearly the same way, when liquids and solids have widely varying expansion rates.
Explanation:
<span>Actually in this case heat energy is being transferred. Heat
energy or thermal energy is transferred from the burning of wood to the
sausages for it to be cooked. The sausage is being heated by the fire and is
absorbing the heat or thermal energy.</span>