Answer:
0.5 M
Explanation:
First we have to start with the <u>molarity equation</u>:
We need to know the<u> amount of moles and the litters</u>.
If we have 100 mL we can convert this value to “L”, so:
Now we can continue with the moles, for this we have to know the <u>formula of sodium sulfate</u>
, with this formula we can <u>calculate the molar mass</u> if we know the atomic mass of each atom on the formula (Na: 23 g/mol, S: 32 g/mol, O: 16 g/mol). We have to multiply each atomic mass by the amount of atoms in the formula, so:
In other words:
Now we can <u>calculate the moles</u>:
Finally, we can <u>calculate the molarity:</u>
I hope it helps!
Balanced chemical equation for the reaction is:
2S
(g) +
(g)+ 2
O (l) ⇒
Moles of
formed is 5.75 moles.
Moles of oxygen used is 5.75 moles in the reaction.
Explanation:
Data given:
moles of S
= 11.5 moles
moles of
= ?
Moles of
needed =?
balanced equation with states of matter =?
Balanced chemical reaction under STP condition is given as:
2S
(g) +
(g) + 2
O (l) ⇒
From the balanced reaction 2 moles of sulphur dioxide reacted to form 1 mole of sulphuric acid:
so, from 11.5 moles of S
, x moles of
is formed

2x = 11.5
x = 5.75 moles of sulphuric acid formed.
From the balanced reaction 1 mole of oxygen reacted to form 1 mole of sulphuric acid.
when 11.5 moles of Sulphur dioxide reacted then oxygen in the reaction is 5.75 moles.
B. climate
this is because it influences the speed of chemical reactions in the soil