Answer:
5.4 ms⁻¹
Explanation:
Here we have to use conservation of energy. Initially when the stick is held vertical, its center of mass is at some height above the ground, hence the stick has some gravitational potential energy. As the stick is allowed to fall, its rotates about one. gravitational potential energy of the stick gets converted into rotational kinetic energy.
= length of the meter stick = 1 m
= mass of the meter stick
= angular speed of the meter stick as it hits the floor
= speed of the other end of the stick
we know that, linear speed and angular speed are related as

= height of center of mass of meter stick above the floor = 
= Moment of inertia of the stick about one end
For a stick, momentof inertia about one end has the formula as

Using conservation of energy
Rotational kinetic energy of the stick = gravitational potential energy

Answer:
hehe
Explanation:
I dont know because I am a noob ant study
<h2>
Answer:442758.96N</h2>
Explanation:
This problem is solved using Bernoulli's equation.
Let
be the pressure at a point.
Let
be the density fluid at a point.
Let
be the velocity of fluid at a point.
Bernoulli's equation states that
for all points.
Lets apply the equation of a point just above the wing and to point just below the wing.
Let
be the pressure of a point just above the wing.
Let
be the pressure of a point just below the wing.
Since the aeroplane wing is flat,the heights of both the points are same.

So,
Force is given by the product of pressure difference and area.
Given that area is
.
So,lifting force is 
Complete question:
Resistor is made of a very thin metal wire that is 3.2 mm long, with a diameter of 0.4 mm. What is the electric field inside this metal resistor? If the potential difference due to electric field between the two ends of the resistor is 10 V.
Answer:
The electric field inside this metal resistor is 3125 V/m
Explanation:
Given;
length of the wire, L = 3.2 mm = 3.2 x 10⁻³ m
diameter of the wire, d = 0.4 mm = 0.4 x 10⁻³ m
the potential difference due to electric field between the two ends of the resistor, V = 10 V
The electric field inside this metal resistor is given by;
ΔV = EL
where;
ΔV is change in electric potential
E = ΔV / L
E = 10 / (3.2 x 10⁻³ )
E = 3125 V/m
Therefore, the electric field inside this metal resistor is 3125 V/m
Parallel circuit
Advandages: 1. Every unit that is connected in a parallel circuit gets equal amount of voltage.
2. It becomes easy to connect or disconnect a new element without affecting the working of other elements.
3. If any fault happened to the circuit, then also the current is able to pass through the circuit through different paths.
Disadvantages: 1. It requires the use of lot of wires.
2. We cannot increase or multiply the voltage in a parallel circuit.
3. Parallel connection fails at the time when it is required to pass exactly same amount of current through the units.
series circuit
Advantages: 1. Series circuits do not overheat easily. This makes them very useful in the case of something that might be around a potentially flammable source, like dry plants or cloth.
2. Series circuits are easy to learn and to make. Their simple design is easy to understand, and this means that it’s simple to conduct repairs .
3. we can add more power devices, they have a higher output in terms of voltage .
4. The current that flows in a series circuit has to flow through every component in the circuit. Therefore, all of the components in a series connection carry the same current.
Disadvantages: 1.If one point breaks in the series circuit,the total circuit will break.
2. As the number of components in a circuit increases ,greater will be the circuit resistance.