Answer:
12 meters per second (12 m/s)
why?
Because if you divide 10 seconds by 10 and 120 by 10, you will get 12 meters in 1 second.
<span>Nothing happens to the pitch of a cell phone ring when the amplitude
of a sound wave increases.
Pitch and amplitude are both characteristics of a wave, but they're not
connected, and they don't influence each other.</span>
Answer: The Northern Hemisphere experiences the start of <u>summer</u>
Explanation:
Due to this tilt in Earth's axis of rotation, some regions receive different amounts of sunlight according to the seasons of the year. These variations are more evident near the poles and softer or imperceptible near the equator. This explains the fact that while in the northern hemisphere it is summer and there are high temperatures (because the Sunlight incides more perpendicularly in this area during this season), in the southern hemisphere it is winter and very low temperatures are recorded, and vice versa.
In this sense, according to the image the Earth is at the point of its orbit in which, due to the inclination of its axis, the North Pole is closer to the Sun.
In other words, the northern hemisphere is tilted toward the Sun, and this astronomical phenomenon brings the summer season for the Northern Hemisphere.
The answer to your question is 343 m/s
Answer:
Explanation:
We need 2 different equations for this problem: first the velocity of sound equation, then the frequency of the sound equation.
The velocity of sound is found in:
v = 331.5 + .606T
We need to find that first in order to fill it into the frequency equation which is
where v is the velocity we will find the part a, f is frequency and lambda is the wavelength. Starting with the velocity of the sound:
v = 331.5 + .606(25) and
v = 331.5 + 15 and rounding correctly using the rules for sig fig when adding:
v = 347 m/s
Filling that into the frequency equation:
and
so