The type of relationship formed when a megabat eats a fig and drops the seeds in a new location is COMENSALISM. It is an ecological interaction.
<h3>What is commensalism?</h3>
Commensalism is a type of ecological interaction in which one organism benefits (in this case, the tree) and the other organism neither benefits nor harm (the megabat).
Mutualism is a type of ecological association in which both organisms benefit from such interaction.
Conversely, parasitism is a type of ecological interaction in which one organism benefits and the other organism is harmed.
Learn more about commensalism here:
brainly.com/question/16712254
∑F = ma = (90 kg)(1.2 m/s²) = 108 N = 100 N (1 significant digit)
Answer:
a) a = - 0.106 m/s^2 (←)
b) T = 12215.1064 N
Explanation:
If
F₁ = 9*1350 N = 12150 N (→)
F₂ = 9*1365 N = 12285 N (←)
∑Fx = M*a = (M₁ +M₂)*a (→)
F₁ - F₂ = (M₁ +M₂)*a
→ a = (F₁ - F₂) / (M₁ +M₂ ) = (12150-12285)N/(9*68+9*73)Kg
→ a = - 0.106 m/s^2 (←)
(b) What is the tension in the section of rope between the teams?
If we apply ∑Fx = M*a for the team 1
F₁ - T = - M₁*a ⇒ T = F₁ + M₁*a
⇒ T = 12150 N + (9 * 68 Kg)*(0.106 m/s^2)
⇒ T = 12215.1064 N
If we choose the team 2 we get
- F₂ + T = - M₂*a ⇒ T = F₂ - M₂*a
⇒ T = 12285 N - (9 * 73 Kg)*(0.106 m/s^2)
⇒ T = 12215.1064 N
Malleable
Malleability
is a property of matter, that’s specializes in metals, in which these metals
can be bended, twisted or formed into a thinner sheets, and not being able to
shatter to pieces instead it can be formed into a new shape. Unlike the other
three, take for instance hardness. If a hard object such as wood for example
when used with an axe it breaks and it is lead to smithereens. Flammable like
is when applied to fire can dramatically explode when hit it obviously breaks.
Answer:
In a coiled spring, the particles of the medium vibrate to and fro about their mean positions at an angle of
A. 0° to the direction of propagation of wave
Explanation:
The waveform of a coiled spring is a longitudinal wave, which is made up of vibrations of the spring which are in the same direction as the direction of the wave's advancement
As the coiled spring experiences a compression force and is then released, it experiences a sequential movement of the wave of the compression that extends the length of the coiled spring which is then followed by a stretched section of the coiled spring in a repeatedly such that the direction of vibration of particles of the coiled is parallel to direction of motion of the wave
From which we have that the angle between the direction of vibration of the particles of the coiled spring and the direction of propagation of the wave is 0°.