1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vilka [71]
3 years ago
14

A comet is first seen at a distance of d astronomical units from the Sun and it is traveling with a speed of q times the Earth’s

speed. Show that the orbit of the comet is hyperbolic, parabolic, or elliptic, depending on whether the quantity q 2d is greater than, equal to, or less than 2, respectively
Physics
1 answer:
saw5 [17]3 years ago
8 0

To solve this problem it is necessary to take into account the concepts of Gravitational Force and Kinetic Energy.

The kinetic energy is given by the equation:

F= \frac{mv^2}2

La energía gravitacional por,

F=\frac{GM_cm}{d}

Where m is the mass, v is the velocity, G the gravitational constant M_e the mass of the earth, m the mass of the sun and d the distance ..

The sum of the energies, we must be a total energy

E= \frac{mv^2}2+\frac{GM_em}{d}

By the type of orbit we know that

E> 0 is a hyperbolic orbit

E = 0 is a parabolic orbit

E <0 is a closed orbit.

In the case of hyperbolic orbit

E>0

\frac{mq^2}{2}-\frac{GM_em}{d}>0\\\frac{qv^2_e}{2}>\frac{GM_em}{d}\\q^2d>2\frac{GM_e}{v^2_e}\\q^2d>2

The case of the comet is a closed orbit, so,

E<0

\frac{mv^2}2+\frac{GM_em}{d}

For parabolic orbit

E=0

\frac{mv^2_eq^2}{2}-\frac{GM_cm}{d}=0\\\frac{v^2_eq^2}{2}=\frac{GM_c}{d}\\q^2d=2\frac{GM_e}{v^2_e}\\q^2d=2

For the sun and the earth

\frac{m_ev_e^2}{r}=\frac{GM_em_e}{r^2}

v^2_e=\frac{GM_e}{r}\\\frac{GM_e}{v_e}=r

where R \approx 1AU

q^2d  For elliptical orbit

You might be interested in
Blood flows through the major artery at 1 m/s for 0.5 m then at a 0.6 m/s over a distance of another 0.5 m through the small art
topjm [15]

Blood flows through the major artery at 1 m/s for 0.5 m then at a 0.6 m/s over a distance of another 0.5 m through the small artery the average speed of blood is 0.4 m/s.

We know that average speed = \frac{0.5\times1+0.6\times0.5}{2}=0.4 m/s

Average speed is an important component in determining how long it takes to finish a journey. Average speed is simply a technique that assists us in calculating trip time and distance. It is obvious that the speed changes throughout the travel, making determining the average speed even more critical.

There are various methods for determining an object's or vehicle's average speed.

It is most desired when the speed of the object remains constant during the voyage, i.e. does not rise or decrease.

The approach for determining the average Speed is to divide. Divide the distance the vehicle travels by the time it travels to get the result.

Learn more about average speed brainly.com/question/12322912

#SPJ9

4 0
2 years ago
Can someone help me answer this??
Bingel [31]

Answer:

<h2>3,2 oky na dekh Lena ek bar</h2><h2>2,5</h2>
7 0
3 years ago
A dolphin can swim at a constant speed of 12.5 m/s. How
myrzilka [38]

Answer:

\boxed {\tt 3.6 \ seconds}

Explanation:

Time can be found by dividing the distance by the speed.

t=\frac{d}{s}

The distance is 45 meters and the speed is 12.5 meters per second.

d= 45 \ m \\s= 12.5 \ m/s

t=\frac{45 \ m}{12.5 \ m/s}

Divide. Note that the meters, or "m" will cancel each other out.

t=\frac{45 }{12.5 \ s}

t=3.6 \ s

It will take the dolphin 3.6 seconds to swim a distance of 45 meters are 12.5 meters per second.

6 0
3 years ago
Read 2 more answers
Which item could you use in place of an ammeter to demonstrate that a
love history [14]

Answer:

the answer is D

Explanation:

6 0
3 years ago
1. A listener stands 20.0 m from a speaker that pumps out music with a power output of 100.0 W.
marta [7]

(1.a) The surface area being vibrated by the time the sound reaches the listener is 5,026.55 m².

(1.b) The intensity of the sound wave as it reaches the person listening is 0.02 W/m².

(1.c) The relative intensity of the sound as heard by the listener is 103 dB.

(2.a) The speed of sound if the air temperature is 15⁰C is 340.3 m/s.

(2.b) The frequency of the sound heard by the suspect is 614.3 Hz.

<h3>Surface area being vibrated</h3>

The surface area being vibrated by the time the sound reaches the listener is calculated as follows;

A = 4πr²

A = 4π x (20)²

A = 5,026.55 m²

<h3>Intensity of the sound</h3>

The intensity of the sound is calculated as follows;

I = P/A

I = (100) / (5,026.55)

I = 0.02 W/m²

<h3>Relative intensity of the sound</h3>

B = 10log(\frac{I}{I_0} )\\\\B = 10 \times log(\frac{0.02}{10^{-12}} )\\\\B = 103 \ dB

<h3>Speed of sound at the given temperature</h3>

v= 331.3\sqrt{1 + \frac{T}{273} } \\\\v = 331.3\sqrt{1 + \frac{15}{273} } \\\\v = 340.3 \ m/s

<h3>Frequency of the sound</h3>

The frequency of the sound heard is determined by applying Doppler effect.

f_o = f_s(\frac{v \pm v_0}{v \pm v_s} )

where;

  • -v₀ is velocity of the observer moving away from the source
  • -vs is the velocity of the source moving towards the observer
  • fs is the source frequency
  • fo is the observed frequency
  • v is speed of sound

f_0 = f_s(\frac{v-v_0}{v- v_s} )

f_0 = 512(\frac{340.3 - 10}{340.3 - 65} )\\\\f_0 = 614.3 \ Hz

Learn more about intensity of sound here: brainly.com/question/17062836

3 0
2 years ago
Other questions:
  • A car travels 40 miles in 30 min. Calculate the car's average speed in mi/hr.
    9·2 answers
  • A light beam shines through a slit and illuminates a distant screen. The central bright fringe on the screen is 1.00 cm wide, as
    7·1 answer
  • When titanium bonds with oxygen, the ionic compound that forms has the chemical formula Ti2O3 and consists of Ti3+ ions and O2-
    7·1 answer
  • First sign of lung cancer
    6·2 answers
  • A firm wants to determine the amount of frictional torque in their current line of grindstones, so they can redesign them to be
    7·1 answer
  • What is the self-inductance of a solenoid 30.0 cm long having 100 turns of wire and a cross-sectional area of 1.00 × 10-4 m2? (μ
    11·1 answer
  • 8.
    13·1 answer
  • 17
    13·1 answer
  • when a metal sphere is dropped in to a tall cylinder containing liquid its acceleration is g÷2 (gravity over 2) show that : dens
    13·1 answer
  • Planet-X has a mass of 4.74×1024 kg and a radius of 5870 km. The First Cosmic Speed i.e. the speed of a satellite on a low lying
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!