Definition:
Speed = (distance covered) / (time to cover the distance).
Speed in the first example = (10 meters) / (1 second) = 10 m/s .
Speed in the second example = (20 meters) / (2 seconds) = 10 m/s.
Apparently, it is. This little exercise demonstrates it.
Answer:
the final temperature = 74.33°C
Explanation:
Using the expression Q = mcΔT for the heat transfer and the change in temperature .
Here ;
Q = heat transfer
m = mass of substance
c = specific heat
ΔT = the change in temperature
The heat Q required to change the phase of a sample mass m is:
Q = m
where;
is the latent heat of vaporization.
From the question ;
Let M represent the mass of the coffee that remains after evaporation is:
ΔT = 
where;
m = 2.50 g
M = (240 - 2.50) g = 237.5 g
= 539 kcal/kg
c = 1.00kcal/kg. °C
ΔT = 
ΔT = 5.67°C
The final temperature of the coffee is:
ΔT
where ;
= initial temperature = 80 °C
= (80 - 5.67)°C
= 74.33°C
Thus; the final temperature = 74.33°C
Answer: Not balanced
Explanation: In order to balance this equation the coefficients are the following:
6 CO2 + 6H2O = > C6H12O6 + 6O2
Answer:
D. It has a central nucleus composed of 35 protons and 45 neutrons,
surrounded by an electron cloud containing 35 electrons.
hope this was helpful ! <3
The analogous formula for magnetic fields is the Ampere's law.
To find the answer, we need to know about the Ampere's law of magnetism.
<h3>What's Ampere's law of magnetism?</h3>
Ampere's law states that the close line integral of magnetic field around a current carrying loop is directly proportional to the current enclosed within it.
<h3>What's is the mathematical expression of Ampere's law?</h3>
Mathematically, Ampere's law is
B•dl= μ₀I
Thus, we can conclude that the analogous formula for gauss law is the Ampere's law in magnetism.
Learn more about the Ampere's law here:
brainly.com/question/17070619
#SPJ4