1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Valentin [98]
3 years ago
14

Electrons in a particle beam each have a kinetic energy of 4.0 × 10 −17 J. What is the magnitude of the electric field that will

stop these electrons in a distance of 0.3 m? ( e = 1.6 × 10 −19 C)
Physics
2 answers:
inessss [21]3 years ago
5 0
<h2>Answer:</h2>

833N/C

<h2>Explanation:</h2>

The work done (W) in stopping these electrons is equal in magnitude to the kinetic energy (K.E) of the electrons. i.e

W = K.E       ---------------(i)

Where;

The work done is also equal in magnitude to the product of the force (F) required to stop these electrons and the distance (r) covered in stopping them. i.e

W = F x r    -----------------(ii)

Also, the force (F) required is the magnitude of the product of the charge (Q)on the electrons and the magnitude of the electric field (E). i.e

F = Q x E    ------------------(iii)

Combining equations (i) and (ii) we have;

K.E = F x r            ---------------------(iv)

Substituting equation(iii) into equation (iv) gives;

K.E = Q x E x r         ------------------------(v)

From the question;

K.E = 4.0 x 10⁻¹⁷J

Q = 1.6 x 10⁻¹⁹ C

r = 0.3

Substitute these values into equation (v) to give;

4.0 x 10⁻¹⁷ = 1.6 x 10⁻¹⁹ x E x 0.3

4.0 x 10⁻¹⁷ = 0.48 x 10⁻¹⁹ x E

Solve for E;

E = 4.0 x 10⁻¹⁷ / (0.48 x 10⁻¹⁹)

E = 8.33 x 10² N / C

E = 833 N/C

Therefore, the electric field that will stop these electrons in a distance of 0.3m is 833N/C

Dmitry_Shevchenko [17]3 years ago
3 0

Answer:

-833.3 N/C

Explanation:

Kinetic energy, K, in terms of electric field, E, is given as:

K = qEr

q = charge = e = 1.6 × 10⁻¹⁹C

E = Electric field

r = distance = 0.3m

The electric field can be gotten by making E subject of formula:

E = K/(qr)

The electeic field needed to stop the electrons must be equal in magnitude to the electric field carried by these electrons:

E = (4.0 × 10⁻¹⁷)/(-1.6 × 10⁻¹⁹ * 0.3)

E = -833.3 N/C

This is the electric field needed to stop the electrons.

The negative sign means that the electric field must be in a direction opposite to the motion of the electrons.

You might be interested in
Can you help quick in science please
nikdorinn [45]
Uhhhh...you should have paid attention in class, just saying...
4 0
3 years ago
please help! find magnitude and direction (the counterclockwise angle with the +x axis) of a vector that is equal to a + c
-BARSIC- [3]

Answer:

Option (2)

Explanation:

From the figure attached,

Horizontal component, A_x=A\text{Sin}37

A_x=12[\text{Sin}(37)]

     = 7.22 m

Vertical component, A_y=A[\text{Cos}(37)]

    = 9.58 m

Similarly, Horizontal component of vector C,

C_x  = C[Cos(60)]

     = 6[Cos(60)]

     = \frac{6}{2}

     = 3 m

C_y=6[\text{Sin}(60)]

    = 5.20 m

Resultant Horizontal component of the vectors A + C,

R_x=7.22-3=4.22 m

R_y=9.58-5.20 = 4.38 m

Now magnitude of the resultant will be,

From ΔOBC,

R=\sqrt{(R_x)^{2}+(R_y)^2}

   = \sqrt{(4.22)^2+(4.38)^2}

   = \sqrt{17.81+19.18}

   = 6.1 m

Direction of the resultant will be towards vector A.

tan(∠COB) = \frac{\text{CB}}{\text{OB}}

                  = \frac{R_y}{R_x}

                  = \frac{4.38}{4.22}

m∠COB = \text{tan}^{-1}(1.04)

             = 46°

Therefore, magnitude of the resultant vector will be 6.1 m and direction will be 46°.

Option (2) will be the answer.

6 0
3 years ago
a car travels 10 miles east in 30 minutes. what is its velocity in miles per hour. what is its velocity in miles per hour?
nika2105 [10]

Answer:

popu

Explanation:

2u2uwju2i2je82jei

8 0
3 years ago
If two forces are in the same direction then do they cancel each other out
stellarik [79]
Im pretty sure that they do

3 0
3 years ago
Pls help :(( I need help!! Its physics! motion and forces!
Delvig [45]

Answer: Pedaling your bike : acceleration :: applying the brakes : inertia.

The reason I think this to be the answer to the analogy is because there is energy and work used in both processes (and the unit focuses on forces); gravity is constant and does not change whether one pedals or applies brakes. And I do not think it's deceleration, as deceleration tends to equate to acceleration within the physics perspective.

Edit: I should also add that since you clarified that your unit is motion and forces, Newtons 1st law is the law of inertia. The way to change an objects motion for it to slow down is by applying an additional force. That resistance the bike experiences to slow is the process of inertia. Inertia happens in order to accelerate an object (either by slowing it down, or speeding it up): i.e., the resistance to change.

8 0
2 years ago
Other questions:
  • 17)
    15·1 answer
  • What can alter the motion of an object
    14·1 answer
  • A fixed mass of an ideal gas is heated from 50 to 80℃ at a constant pressure of (a) 1 atm and (b) 3 atm. for which case do you t
    6·1 answer
  • If the torque required to loosen a nut on a wheel has a magnitude of 40.0 N·m and the force exerted by a mechanic is 133 N, how
    5·1 answer
  • PLS I NEED HELP ASAP!!!
    10·1 answer
  • Explain how a Faraday motor works, please. Help me out
    5·1 answer
  • A wheel rotates without friction about a stationary horizontal axis at the center of the wheel. A constant tangential force equa
    9·1 answer
  • You are a mechanic in a garage and are working on a carburetor that is made of metal, has a glass inspection window and plastic
    5·1 answer
  • Calculate the value of 200°C in Kelvin
    5·1 answer
  • WORTH 50 POINTSSSS!!!!!!!! don't lie either if you do I will report your answer and get my points back idc !!!!!!
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!