Best Answer:<span> </span><span>The net angle between the direction of flight of the aircraft and the wind in the opposing direction is 20. THe component opposing the aircraft is 2.4*cos 20 KN
= 2400 * 0.9397 = 2255.2622 N. The distance covered is 120 Km
The work done by the aircraft overcoming the wind is
= 2255.2622 * 120000 = 270631464 = 2.71 x 10^8 N
As the question is trickily worded as : the work done on the plane by the air (wind) the answer is -2.71 x 10^8 J . (fourth option)</span>
The last one, the soil will become weak & unable to support plant growth
Answer:
Final Length = 30 cm
Explanation:
The relationship between the force applied on a string and its stretching length, within the elastic limit, is given by Hooke's Law:
F = kΔx
where,
F = Force applied
k = spring constant
Δx = change in length of spring
First, we find the spring constant of the spring. For this purpose, we have the following data:
F = 50 N
Δx = change in length = 25 cm - 20 cm = 5 cm = 0.05 m
Therefore,
50 N = k(0.05 m)
k = 50 N/0.05 m
k = 1000 N/m
Now, we find the change in its length for F = 100 N:
100 N = (1000 N/m)Δx
Δx = (100 N)/(1000 N/m)
Δx = 0.1 m = 10 cm
but,
Δx = Final Length - Initial Length
10 cm = Final Length - 20 cm
Final Length = 10 cm + 20 cm
<u>Final Length = 30 cm</u>
Answer:
The tension force in the supporting cables is 7245N
Explanation:
There are two forces acting on the elevator: the force of gravity pointing down (+) with magnitude (elevator mass) x (gravitational acceleration), and the tension force of the cable pointing up (-) with an unknown magnitude F. The net force is the sum of these forces:

We are given the resulting acceleration along with the mass, i.e., we know the net force, allowing us to solve for F:

The tension force F in the supporting cables is 7245N

Actually Welcome to the Concept of the Projectile Motion.
Since, here given that, vertical velocity= 50m/s
we know that u*sin(theta) = vertical velocity
so the time taken to reach the maximum height or the time of Ascent is equal to
T = Usin(theta) ÷ g, here g = 9.8 m/s^2
so we get as,
T = 50/9.8
T = 5.10 seconds
thus the time taken to reach max height is 5.10 seconds.