First, we have a change in the velocity from 85 to 164 m/s in 10 sec.
Then, we calculate the <u>acceleration </u>as:

Hence we need to calculate the velocity of the space vehicle at t = 2 sec using the first equation of motion:

Then, using the second equation of motion to calculate the distance:


The rms speed can be calculated using the following rule:
rms = sqrt ((3RT) / (M)) where:
R is the gas constant = 8.314 J/mol-K
T is the temperature = 31.5 + 273 = 304.5 degrees kelvin
M is the molar mass = 2*14 = 28 grams = 0.028 kg
Substitute with the givens to get the rms speed as follows:
rms speed = sqrt [(3*8.314*304.5) / (0.028)] = 520.811 m/sec
Answer: A)30V. First find the current of the circuit. I=V/R(total resistance). So I=60/120=0.5. Now to find voltage drop in R3 use ohms law as given. V(of 3)=(0.5)(60)=30V
Forces are exerted I believe : all of the above
The action force might be Tyler throwing the ball
I don't know the last one
Answer:
Sound intensity levels are quoted in decibels (dB) much more often than sound intensities in watts per meter squared. Decibels are the unit of choice in the scientific literature as well as in the popular media. The reasons for this choice of units are related to how we perceive sounds. How our ears perceive sound can be more accurately described by the logarithm of the intensity rather than directly to the intensity. The sound intensity level β in decibels of a sound having an intensity I in watts per meter squared is defined to be β(dB)=10log10(II0)β(dB)=10log10(II0), where I0 = 10−12 W/m2 is a reference intensity. In particular, I0 is the lowest or threshold intensity of sound a person with normal hearing can perceive at a frequency of 1000 Hz. Sound intensity level is not the same as intensity. Because β is defined in terms of a ratio, it is a unitless quantity telling you the level of the sound relative to a fixed standard (10−12 W/m2, in this case). The units of decibels (dB) are used to indicate this ratio is multiplied by 10 in its definition. The bel, upon which the decibel is based, is named for Alexander Graham Bell, the inventor of the telephone.
Table 1. Sound Intensity Levels and IntensitiesSound intensity level β (dB)Intensity I(W/m2)Example/effect01 × 10–12Threshold of hearing at 1000 Hz101 × 10–11Rustle of leaves201 × 10–10Whisper at 1 m distance301 × 10–9Quiet home401 × 10–8Average home501 × 10–7Average office, soft music601 × 10–6Normal conversation701 × 10–5Noisy office, busy traffic801 × 10–4Loud radio, classroom lecture901 × 10–3Inside a heavy truck; damage from prolonged exposure[1]1001 × 10–2Noisy factory, siren at 30 m; damage from 8 h per day exposure1101 × 10–1Damage from 30 min per day exposure1201Loud rock concert, pneumatic chipper at 2 m; threshold of pain1401 × 102Jet airplane at 30 m; severe pain, damage in seconds1601 × 104Bursting of eardrums