Answer:
Explanation:
You need to remember that the oxidation number of H is +1, except when it is in a metal hydrites like NaH, where its oxidation number is -1. Then, the oxidation number of O is -2, but in peroxides is -1. So with these rules you just have to multiply the ox. number with the name of atoms and all the elements in the reaction must sum 0.
1. C
2. C
3. In elastic deformation, the deformed body returns to its original shape and size after the stresses are gone. In ductile deformation, there is a permanent change in the shape and size but no fracturing occurs. In brittle deformation, the body fractures after the strength is above the limit.
4. Normal faults are faults where the hanging wall moves in a downward force based on the footwall; they are formed from tensional stresses and the stretching of the crust. Reverse faults are the opposite and the hanging wall moves in an upward force based on the footwall; they are formed by compressional stresses and the contraction of the crust. Thrust faults are low-angle reverse faults where the hanging wall moves in an upward force based on the footwall; they are formed in the same way as reverse faults. Last, Strike-slip faults are faults where the movement is parallel to the crust of the fault; they are caused by an immense shear stress.
I hope this helped :D
1)Identify the atoms that are participating in a covalent bond.
2)Draw each atom by using its element symbol. The number of valence electrons is shown by placing up to two dots on each side of the element symbol, with each dot representing a single valence electron.
3)Predict the number of covalent bonds each atom will make using the octet rule.
4)Draw the bonding atoms next to each other, showing a single covalent bond as either a pair of dots or a line representing a shared valence electron pair. If the molecule forms a double or triple bond, use two or three lines to represent the shared electron pairs, respectively.
Moles = n/v where n is the moles of solute and v being the liters of solution.
We can put in the information provided to find the molarity.
Moles = .45/3.0 = .15
So we now know that the molarity of that solution is .15!
I hope I helped you :). Make sure to memorize that formula because it's not that hard as long as you know what to plug in.
The amount of molecules assembled, the processes performed on the substances. I'm not exactly sure of the question to be honest, but there's a start