Similar to Cohesion, adhesion is the attraction between molecules of different substances . Water uses adhesion when it's attraction to another substance is greater than the water's attraction to itself. if you have ever dropped a cup of water on a hardwood floor,you know that it spreads out instead of foaming beads.
¿ cuál es la pregunta que intentas hacer?
Answer:
-12.5 kJ/mol
Explanation:
The free-energy predicts if a reaction is spontaneous or not. If it is, ΔG < 0. When a reaction happens by steps, the free-energy of the global reaction can be calculated by the sum of the free-energy of the steps (Hess law). If it's needed to operations at the reaction the same operation must be done in the value of ΔG (if the reaction is inverted, the signal of ΔG must be inverted).
Phosphocreatine → creatine + Pi ∆G'° = –43.0 kJ/mol
ATP → ADP + Pi ∆G'° = –30.5 kJ/mol (x-1)
--------------------------------------------------------------------------------------
Phosphocreatine → creatine + Pi ∆G'° = –43.0 kJ/mol
Pi + ADP → ATP ∆G'° = 30.5 kJ/mol
The bold compounds are in opposite sides, so they'll be canceled in the sum of the reactions:
Phosphocreatine + ADP → creatine + ATP
∆G'° = -43.0 + 30.5
∆G'° = -12.5 kJ/mol
<span>NaCl
First calculate the molar mass of NaCl and AgNO3 by looking up the atomic weights of each element used in either compound
Sodium = 22.989769
Chlorine = 35.453
Silver = 107.8682
Nitrogen = 14.0067
Oxygen = 15.999
Now multiply the atomic weight of each element by the number of times that element is in each compound and sum the results
For NaCl
22.989769 + 35.453 = 58.44277
For AgNO3
107.8682 + 14.0067 + 3 * 15.999 = 169.8719
Now calculate how many moles of each substance by dividing the total mass by the molar mass
For NaCl
4.00 g / 58.44277 g/mol = 0.068443 mol
For AgNO3
10.00 g / 169.8719 g/mol = 0.058868
Looking at the balanced equation for the reaction, there is a 1 to 1 ratio in molecules for the reaction. Since there is a smaller number of moles of AgNO3 than there is of NaCl, that means that there will be some NaCl unreacted, so the excess reactant is NaCl</span>
We have to calculate the molar mass of AL(OH)₃
Atomic mass (Al)=27 amu
Atomic mass (O)=16 amu
Atomic mass (H)=1 amu
molecular weight= 27 amu+3(16 amu + 1 amu) =78 amu.
Therefore, the molar mass of Al (OH)₃ is 78 g/ mol
Now, we calculate the number of moles in 98.3 g of aluminum hydroxide.
78 g-------------------1 mol
98.3 g----------------- x
x=(98.3 g * 1 mol) / 78 g=1.26 moles.
Answer: 1.26 moles.