<span>Net Ionic equation: 3Zn^2+(aq) + 2PO4^3-(aq) ---> Zn3(PO4)2 (s)
hope it helps
</span>
Answer:
A. 30cm³
Explanation:
Based on the chemical reaction:
CaCO₃ + 2HCl → CaCl₂ + H₂O + CO₂
<em>1 mol of calcium carbonate reacts with 2 moles of HCl to produce 1 mol of CO₂</em>
<em />
To solve this question we must convert the mass of each reactant to moles. With the moles we can find limiting reactant and the moles of CO₂ produced. Using PV = nRT we can find the volume of the gas:
<em>Moles CaCO₃ -Molar mass: 100.09g/mol-</em>
1.00g * (1mol / 100.09g) = 9.991x10⁻³ moles
<em>Moles HCl:</em>
50cm³ = 0.0500dm³ * (0.05 mol / dm³) = 2.5x10⁻³ moles
For a complete reaction of 2.5x10⁻³ moles HCl there are necessaries:
2.5x10⁻³ moles HCl * (1mol CaCO₃ / 2mol HCl) = 1.25x10⁻³ moles CaCO₃. As there are 9.991x10⁻³ moles, HCl is limiting reactant.
The moles produced of CO₂ are:
2.5x10⁻³ moles HCl * (1mol CO₂ / 2mol HCl) = 1.25x10⁻³ moles CO₂
Using PV = nRT
<em>Where P is pressure = 1atm assuming STP</em>
<em>V volume in L</em>
<em>n moles = 1.25x10⁻³ moles CO₂</em>
<em>R gas constant = 0.082atmL/molK</em>
<em>T = 273.15K at STP</em>
<em />
V = nRT / P
1.25x10⁻³ moles * 0.082atmL/molK*273.15K / 1atm = V
0.028L = V
28cm³ = V
As 28cm³ ≈ 30cm³
Right option is:
<h3>A. 30cm³</h3>
Answer:
[NaOH} = 0.4 M
Explanation:
In a reaction of neutralization, we determine the equivalence point of the titration. In this case, we have a strong base and a strong acid.
(H₂SO₄, is considered strong, but the first deprotonation is weak)
2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂O
As we have 2 protons in the acid, we need 2 OH⁻ from the base to form 2 molecules of water.
In the equivalence point we know mmoles of base = mmoles of acid
Let's finish the excersise with the formula
25 mL . M NaOH = 28.2 mL . 0.355M
M NaOH = (28.2 mL . 0.355M) / 25 mL → 0.400
A simple way to go about this is that we look at the solubility curve, on the x axis we first look at the temperature and then the corresponding value of solute/100g H2O on the y axis, from the 4 curves above only NaNO3 has a curve that can accommodate 80g of salt at 40 without being Saturated since at 40 degrees it can accommodate 105g of salt to become completely Saturated.