<span>An object at rest will stay at rest unless acted upon by a unbalanced force.
</span>
Answer:
Firsthand association assigns energy throughout conduction. Radiation transpires when particles consume energy that progresses as a wave. The heat will run from the h2O to the ice continuously until the ice has absolutely melted so both elements have reached the same temperature.
Explanation:
Mass is often the most common and weight is its close to that but I'd go with mass
Answer: [Kr] 5s1 4d10 silver
[Xe] 6s2 4f14 5d7 Iridium
[Ar] 4s2 3d10 4p4 selenium
[Kr] 5s1 4d4 niobium
[Xe] 6s1 4f14 5d10 gold
[Kr] 5s2 4d10 5p4 tellurium
Explanation:
Selenium and tellurium will have the same properties because they both belong to group 16 in the periodic table.
Silver and gold will have the same properties because they both belong the group 11 in the periodic table.
Elements having the same outermost shell configuration show similar properties since chemical reactions occur by loss or gain of electrons. This loss or gain is determined by the number of electrons occupying the outermost shell. Elements in the same group have the same outermost shell electron configuration and similar properties.
Answer:
Aluminum iodide (AlI₃)
Explanation:
The synthesis reaction of aluminum (Al) and iodine (I) can be illustrated as shown below:
Aluminium exhibit trivalent positive ion (Al³⁺)
Iodine exhibit univalent negative ion (I¯)
During reaction, there will be an exchange of ion as shown below:
Al³⁺ + I¯ —> AlI₃
Thus, we can write the balanced equation for the reaction as follow:
Al + I₂ —› AlI₃
There are 2 atoms of I on the left side and 3 atoms on the right side. It can be balance by putting 2 in front of AlI₃ and 3 in front of I₂ as shown below:
Al + 3I₂ —› 2AlI₃
There are 2 atoms of Al on the right side and 1 atom on the left side. It can be balance by putting 2 in front of Al as shown below:
2Al + 3I₂ —› 2AlI₃
Thus the equation is balanced.
The product on the reaction is aluminum iodide (AlI₃)