<span>pile
battery
<span>power sector</span></span>
Answer:
Explanation:
The velocity of a wave in a string is equal to:
v = √(T / (m/L))
where T is the tension and m/L is the mass per length.
To find the mass per length, we need to find the cross-sectional area of the thread.
A = πr² = π/4 d²
A = π (3.0×10⁻⁶ m)²
A = 2.83×10⁻¹¹ m²
So the mass per length is:
m/L = ρA
m/L = (1300 kg/m³) (2.83×10⁻¹¹ m²)
m/L = 3.68×10⁻⁸ kg/m
So the wave velocity is:
v = √(T / (m/L))
v = √(7.0×10⁻³ N / (3.68×10⁻⁸ kg/m))
v ≈ 440 m/s
The speed of sound in air at sea level is around 340 m/s. So the spider will feel the vibration in the thread before it hears the sound.
Answer:
5 ft/s²
Explanation:
u = Initial velocity = 100 ft/s
v = Final velocity = 0
s = Displacement = 1000 ft
a = Acceleration
From equation of motion


The airplane's deceleration is 5 ft/s² or 1.524 m/s²
From my research, the question has the following choices:
a.the lowest frequency at which a standing wave is possible
b. the highest frequency at which s standing wave is possiblec. the only frequency at which a standing wave is possible
d. the only frequency at which standing wave is not possible
From there, the correct answer is A.
Answer:
v= 4055.08m/s
Explanation:
This is a problem that must be addressed through the laws of classical mechanics that concern Potential Gravitational Energy.
We know for definition that,

We must find the highest point and the lowest point to identify the change in energy, so
Point a)
The problem tells us that an object is dropped at a distance of h = 1.15134R over the earth.
That is to say that the energy of that object is equal to,


Point B )
We now use the average radius distance from the earth.


Then,


By the law of conservation of energy we know that,

clearing v,



Therefore the speed of the object when it strikes the Earth’s surface is 4055.08m/s