The correct answer is<span> B.The speed of sound in air is directly proportional to the temperature of the air.
When the temperature increases so does the speed of sound. Sound is faster by </span>0.60 m/s for every higher degree in air temperature because the air density is reduced and the sound can travel faster.
Answer:
d. 37 °C
Explanation:
= mass of lump of metal = 250 g
= specific heat of lump of metal = 0.25 cal/g°C
= Initial temperature of lump of metal = 70 °C
= mass of water = 75 g
= specific heat of water = 1 cal/g°C
= Initial temperature of water = 20 °C
= mass of calorimeter = 500 g
= specific heat of calorimeter = 0.10 cal/g°C
= Initial temperature of calorimeter = 20 °C
= Final equilibrium temperature
Using conservation of heat
Heat lost by lump of metal = heat gained by water + heat gained by calorimeter

Answer:
A. Mass(only)
Explanation:
The correct answer is A because if the balloon is filled with air, it's filled with matter. Matter is anything that has space and occupies mass. The air occupies mass in the balloon but that doesn't mean that the balloon is heavier. People confuse themselves with mass and weight saying it means the same thing. Mass, like I said is the amount of matter an object contains whereas weight is how much an object weighs.
<h3>
Answer:</h3>
49 N
<h3>
Explanation:</h3>
<u>We are given;</u>
- Mass of the brick as 3 kg
- The coefficient of friction as 0.6
We are required to determine the force that must be applied by the woman so the brick does not fall.
- We need to importantly note that;
- For the brick not to fall the, the force due to gravity is equal to the friction force acting on the brick.
- That is; Friction force = Mg
But; Friction force = μ F
Therefore;
μ F = mg
0.6 F = 3 × 9.8
0.6 F = 29.4
F = 49 N
Therefore, she must use a force of 49 N