Answer:
To find the diameter of the wire, when the following are given:
Resistivity of the material (Rho), Current flowing in the conductor, I, Potential difference across the conductor ends, V, and length of the wire/conductor, L.
Using the ohm's law,
Resistance R = (rho*L)/A
R = V/I.
Crossectional area of the wire A = π*square of radius
Radius = sqrt(A/π)
Diameter = Radius/2 = [sqrt(A/π)]
Making A the subject of the formular
A = (rho* L* I)V.
From the result of A, Diameter can be determined using
Diameter = [sqrt(A/π)]/2. π is a constant with the value 22/7
Explanation:
Error and uncertainty can be measured varying the value of the parameters used and calculating different values of the diameters. Compare the values using standard deviation
Answer:
The axle is fixed to a frame or a block. The pulley is normally fixed to a support above the load. The load is tied to one end of the rope and the effort is applied at the other end. Such a pulley makes our work easier by simply changing the direction of the force, i.e. a load is lifted up using a downward effort.
May be this will help U
Answer:
c is the correct answer
Explanation:
A Rube Goldberg Machine is “a comically involved, complicated invention, laboriously contrived to preform a simple operation.” 2. What are the 6 Simple Machines? A. The 6 Simple Machines are: wedge, screw, lever, wheel and axel, inclined plane and pulley
Solid moves slightly in a fixed position
First, let's calculate the frequency of this radiation, which is given by:

where c is the speed of light and

is the photon wavelength. For this radiation, photons have wavelength of

Therefore their frequency is

The energy of a photon with frequency f is given by

where h is the Planck constant. By using the frequency we found before, we find the energy of a single photon of this radiation: