Answer:
Answer:u=66.67 m/s
Explanation:
Given
mass of meteor m=2.5 gm\approx 2.5\times 10^{-3} kg
velocity of meteor v=40km/s \approx 40000 m/s
Kinetic Energy of Meteor
K.E.=\frac{mv^2}{2}
K.E.=\frac{2.5\times 10^{-3}\times (4000)^2}{2}
K.E.=2\times 10^6 J
Kinetic Energy of Car
=\frac{1}{2}\times Mu^2
=\frac{1}{2}\times 900\times u^2
\frac{1}{2}\times 900\times u^2=2\times 10^6
900\times u^2=4\times 10^6
u^2=\frac{4}{9}\times 10^4
u=\frac{2}{3}\times 10^2
u=66.67 m/s
The answer is emagination emagination
Answer:
875 N
Explanation:
From this question, you didn't state the time taken for the bumper car to move or to hit the other bumper car. In calculations of force, time is often needed, because
Force = mass * acceleration, while
Acceleration = velocity / time, basically
Force = mass * velocity / time.
We have our mass, we have our velocity, but we haven't time. So, for this calculation, I'd assume our time to be 1s.
Going by the formula I stated, we can then say that
Force = 250 * 3.5 / 1
Force = 875 N
This means the force my bumper car have while moving at 3.5 m/s for an estimated time of 1s is 875 N
Well momentum is = to Mass*Velocity so let's use an example to figure this out
If I weighed 50kg and I was jogging at 3m/s then I broke into a run at 6m/s how will me momentum be affected?
3m/s*50kg=150
6m/s*50kg=300
So as you can see by doubling the velocity you also double the momentum
In rivers that are close to sea