I believe the last one about the bike is correct.
The distance an object falls from rest through gravity is
D = (1/2) (g) (t²)
Distance = (1/2 acceleration of gravity) x (square of the falling time)
We want to see how the time will be affected
if ' D ' doesn't change but ' g ' does.
So I'm going to start by rearranging the equation
to solve for ' t '. D = (1/2) (g) (t²)
Multiply each side by 2 : 2 D = g t²
Divide each side by ' g ' : 2 D/g = t²
Square root each side: t = √ (2D/g)
Looking at the equation now, we can see what happens to ' t ' when only ' g ' changes:
-- ' g ' is in the denominator; so bigger 'g' ==> shorter 't'
and smaller 'g' ==> longer 't' .--
They don't change by the same factor, because 1/g is inside the square root. So 't' changes the same amount as √1/g does.
Gravity on the surface of the moon is roughly 1/6 the value of gravity on the surface of the Earth.
So we expect ' t ' to increase by √6 = 2.45 times.
It would take the same bottle (2.45 x 4.95) = 12.12 seconds to roll off the same window sill and fall 120 meters down to the surface of the Moon.
IV - Temperature
DV - Light intensity
I would say the answer is 3 because by falling technically the ball would be kind of moving in the air. Plus potential energy is when for example a soccer ball isnt moving
Answer:
60 kg m/s
Explanation:
Let
be the acceleration of the object.
As the acceleration of the object is constant, so

Given that applied force, F=6.00 N,
From Newton's second law, we have
,
[from equation (i)]


[given that time, t=10 s and F=6 N]

Here mv is the final momentum of the object and mu is the initial momentum of the object.
So, the change in the momentum of the object is mv-mu.
Hence, the change in the momentum of the object is 60 kg m/s.