Answer:
1.5F
Explanation:
Using
E= F/q
Where F= force
E= electric field
q=charge
F= Eq
So if qis tripled and E is halved we have
F= (E/2)3q
F= 1.5Eq=>> 1.5F
Answer:
(a) 3.807 s
(b) 145.581 m
Explanation:
Let Δt = t2 - t1 be the time it takes from the moment when the motorcycle starts to accelerate until it catches up with the car. We know that before the acceleration, both vehicles are travelling at a constant speed. So they would maintain a distance of 58 m prior to the acceleration.
The distance traveled by car after Δt (seconds) at
speed is

The distance traveled by the motorcycle after Δt (seconds) at
speed and acceleration of a = 8 m/s2 is


We know that the motorcycle catches up to the car after Δt, so it must have covered the distance that the car travels, plus their initial distance:





(b)


Oil, grease and dry lubricants
✒ Answer
In the case of still lake and ocean water how are they different in transferring energy from one location to another?
- Answer:Energy is transferred in waves through the vibration of particles
In what direction will you move a rope to create transverse waves?
- Answer: in the direction of the black arrow
In what direction will you move a slinky to create longitudinal waves?
- Answer: parallel to the direction that energy is transported.
Answer:
and 
Explanation:
The wavelength of a visible light is 727.3 nm.

The formula is as follows :

f is the frequency of the visible light

Energy of a photon is given by :
E = hf, h is Planck's constant

Red color has a frequency of
and energy per photon is
.