Answer:
It does both. Once they get close enough the air does start to get charged, but then they eventually discharge when they touch.
Explanation:
The first two are always the reactants the products come after so they are last
From the calculations, the power expended is 43650 W.
<h3>What is the power expended?</h3>
Now we can find the acceleration from;
v = u + at
u = 0 m/s
v = 95 km/h or 26.4 m/s
t = 6.8 s
a = ?
Now
v = at
a = v/t
a = 26.4 m/s/ 6.8 s
a = 3.88 m/s^2
Force = ma = 850-kg * 3.88 m/s^2 = 3298 N
The distance covered is obtained from;
v^2 = u^2 + 2as
v^2 = 2as
s = v^2/2a
s = (26.4)^2/2 * 3.88
s = 696.96/7.76
s = 90 m
Now;
Work = Fs
Work = 3298 N * 90 m = 296820 J
Power = 296820 J/ 6.8 s
= 43650 W
Learn more about power expended:brainly.com/question/11579192
#SPJ1
<span>Heat is radiated, atmospheric moisture condenses at a rate greater than that at which it can evaporate, resulting in the formation of water droplets.</span>