Answer:
Mass = 8.46 g
Explanation:
Given data:
Mass of water produced = ?
Mass of glucose = 20 g
Mass of oxygen = 15 g
Solution:
Chemical equation:
C₆H₁₂O₆ + 6O₂ → 6H₂O + 6CO₂
Number of moles of glucose:
Number of moles = mass/molar mass
Number of moles = 20 g/ 180.16 g/mol
Number of moles = 0.11 mol
Number of moles of oxygen:
Number of moles = mass/molar mass
Number of moles = 15 g/ 32 g/mol
Number of moles = 0.47 mol
now we will compare the moles of water with oxygen and glucose.
C₆H₁₂O₆ : H₂O
1 : 6
0.11 : 6/1×0.11 = 0.66
O₂ : H₂O
6 : 6
0.47 : 0.47
Less number of moles of water are produced by oxygen thus it will limit the yield of water and act as limiting reactant.
Mass of water produced:
Mass = number of moles × molar mass
Mass = 0.47 mol ×18 g/mol
Mass = 8.46 g
The (B) answer (B) is (B) (B) (B)
Answer:
The answer to this question is D.
Explanation: We know that only plants have a cell wall so that is helpful and we know that plants are green because of their chloroplast. So the answer is D, cell wall, and chloroplast.
There are 34 g of oxygen in the container.
We can use the<em> Ideal Gas Law</em> to solve this problem.
But
, so
and

STP is 0 °C and 1 bar, so

Answer:
The 12L helium tank pressurized to 160 atm will fill <em>636 </em>3-liter balloons
Explanation:
It is possible to answer this question using Boyle's law:

Where P₁ is the pressure of the tank (160atm), V₁ is the volume of the tank (12L), P₂ is the pressure of the balloons (1atm, atmospheric pressure) And V₂ is the volume this gas will occupy at 1 atm, thus:
160atm×12L = 1atm×V₂
V₂ = 1920L
As the tank will never be empty, the volume of the gas able to fill balloons is the total volume minus 12L, thus the volume of helium able to fill balloons is:
1920L - 12L = 1908L
1908L will fill:
1908L×
= <em>636 balloons</em>
<em></em>
I hope it helps!