Answer:
The correct option is;
It contains 6.02 × 10²³ particles of a given substance
Explanation:
A mole of substance is the standard scientific unit of measurement for the quantity of the substance which is made up of a large number of small particles such as molecules, ions, atoms, electrons or other entities.
The General Conference on Weights and Measures defines the mole as the amount of a substance that contains 6.02214076 × 10²³ units of entities
The number 6.02214076 × 10²³, is also known as Avogadro's number.
Answer:
1) 2Al + 6HCl ⟶ 2AlCl₃ + 3H₂
Fe + 2HCl ⟶ FeCl₂ + H₂
2) Cu = 2.5 g; Al = 3.5 g; Fe = 4.0 g
Explanation:
1) Possible reactions
2Al + 6HCl ⟶ 2AlCl₃ + 3H₂
Fe + 2HCl ⟶ FeCl₂ + H₂
2) Mass of each metal
a) Mass of Cu
The waste was the unreacted copper.
Mass of Cu = 2.5 g
b) Masses of Al and Fe
We have two relations
:
Mass of Al + mass of Fe = 10 g - 2.5 g = 7.5 g
H₂ from Al + H₂ from Fe = 6.38 L at NTP
i) Calculate the moles of H₂
NTP is 20 °C and 1 atm.

(ii) Solve the relationship
Let x = mass of Al. Then
7.5 - x = mass of Fe
Moles of Al = x/27
Moles of Fe = (7.5 - x)/56
Moles of H₂ from Al = (3/2) × Moles of Al = (3/2) × (x/27) = x
/18
Moles of H₂ from Fe = (1/1) × Moles of Fe = (7.5 - x)/56
∴ x/18 + (7.5 - x)/56 = 0.2652
56x + 18(7.5 - x) = 267.3
56x + 135 - 18x = 267.3
38x = 132.3
x = 3.5 g
Mass of Al = 3.5 g
Mass of Fe = 7.5 g - 3.5 g = 4.0 g
The masses of the metals are Cu = 2.5 g; Al = 3.5 g; Fe = 4.0 g
Answer:
The correct option is;
4 percent ionic, 96 percent covalent, 222 pm
Explanation:
The parameters given are;
Phosphorus:
Atomic radius = 109 pm
Covalent radius = 106 pm
Ionic radius = 212 pm
Electronegativity of phosphorus = 2.19
Selenium:
Atomic radius = 122 pm
Covalent radius = 116 pm
Ionic radius = 198 pm
Electronegativity of selenium= 2.55
The percentage ionic character of the chemical bond between phosphorus and selenium is given by the relation;
Using Pauling's alternative electronegativity difference method, we have;
![\% \, Ionic \ Character = \left [18\times (\bigtriangleup E.N.)^{1.4} \right ] \%](https://tex.z-dn.net/?f=%5C%25%20%5C%2C%20Ionic%20%5C%20Character%20%3D%20%5Cleft%20%5B18%5Ctimes%20%28%5Cbigtriangleup%20E.N.%29%5E%7B1.4%7D%20%20%5Cright%20%5D%20%5C%25)
Where:
Δ E.N. = Change in electronegativity = 2.55 - 2.19 = 0.36
Therefore;
![\% \, Ionic \ Character = \left [18\times (0.36)^{1.4} \right ] \% = 4.3 \%](https://tex.z-dn.net/?f=%5C%25%20%5C%2C%20Ionic%20%5C%20Character%20%3D%20%5Cleft%20%5B18%5Ctimes%20%280.36%29%5E%7B1.4%7D%20%20%5Cright%20%5D%20%5C%25%20%3D%204.3%20%5C%25)
Hence the percentage ionic character = 4.3% ≈ 4%
the percentage covalent character = (100 - 4.3)% = 95.7% ≈ 96%
The bond length for the covalent bond is found adding the covalent radii of both atoms as follows;
The bond length for the covalent bond = 106 pm + 116 pm = 222 pm.
The correct option is therefore, 4 percent ionic, 96 percent covalent, 222 pm.
Answer:
the answer is number 1
Explanation:
because when you make toast you burn it you toast it and there is no way to undo that.