Answer:
We feel cold when tap or well water in winter because heat flows from hot body to cold body.
Explanation:
Our <em>body</em><em> </em><em>is</em><em> </em><em>in</em><em> </em><em>optimal</em><em> </em><em>status</em><em> </em><em>is</em><em> </em><em>a</em><em> </em><em>hot</em><em> </em><em>body</em><em> </em><em>and</em><em> </em><em>tap</em><em> </em><em>or</em><em> </em><em>we</em><em>ll</em><em> </em><em>water</em><em> </em><em>is</em><em> </em><em>a</em><em> </em><em>cold</em><em> </em><em>body</em><em>.</em><em> </em><em>Theref</em><em>ore</em><em> </em><em>we</em><em> </em><em>feel</em><em> </em><em>cold</em><em>.</em>
Answer:
L = 0.635m
Explanation:
This problem involves the concept of stationary waves in pipes. For pipes closed at one end,
The frequency f = nv/4L for n = 1,3,5....n
For pipes open at both ends
f = nv/2L for n = 1,2,3,4...n
Assuming the pipe is closed at one end and that velocity of sound is 343m/s in air. If we are right we will obtain a whole number for n.
The film solution can be found in the attachment below.
Answer:
The value of current generated would increase.
Explanation:
Electromagnetic induction is the process by which an electromotive force is induced due to a variation of magnetic field.
The induced current is directly proportional to rate at which the coil cuts the magnetic field. Using more powerful battery in the experiment would increase the rate at the the coil cuts the magnetic field, therefore increasing the rate of variation in the magnetic field. This effect would cause a greater deflection on the galvanometer's scale, showing an increase in the current generated.
This experiment proves that an alternating current can be produced from magnetic field.