None of the choices is a force. 'a' and 'b' are speeds. 'C' and 'd' are accelerations. ... The steady force of gravity is 9.8 newtons PER KILOGRAM of mass. ... The question is written by someonewho very much wants to discourage anyone interested in Physics.
Answer:
d. )directed upward.
Explanation:
As the electron has a negative charge, when under the influence of an electric field, is subject to an electric force, which direction is the opposite to the direction of the electric field.
This is because the electric field has the same direction that the force on a positive test charge at the same point.
As the electric field points vertically downward, the electric force on the electron (a negative charge) points vertically upward.
So, the statement d. is the one that results to be true.
<h2>
Answer:</h2>
<h2>Comet:</h2>
It is a celestial body constituted by ice, dust and rocks that orbit around the Sun, after having been altered by the Oort cloud; following different trajectories that can be highly eccentric elliptical (periodic trajectories), parabolic or hyperbolic.
One of the main characteristics of a comet is that it travels quite fast, on its way around the Sun and has a long tail, which always go in the opposite direction to the Sun (due to the radiation pressure of sunlight).
<h2>Asteroid:
</h2>
It is a small rocky body (smaller than a planet and larger than a meteoroid). Most of these bodies are orbiting between Mars and Jupiter in the region known as the asteroid belt; while others accumulate at Jupiter's Lagrange points, and others cross the orbits of the planets.
<h2>Meteoroid:
</h2>
It is a fragment of the celestial body that moves through space, which is smaller in size to an asteroid. If it gets to enter the atmosphere of the Earth, it will start to burn by friction with it (combustion) and it will be called a meteor, while if it hits the surface, it will be called a meteorite.
The first law, which deals with changes in the internal energy, thus becomes 0 = Q - W, so Q = W.
If the system does work, the energy comes from heat flowing into the system from the reservoir; if work is done on the system, heat flows out of the system to the reservoir