The correct answer for the question that is being presented above is this one: "Electrovalency is characterized with the transferring of one or more electrons from one atom to another together with the formation of ions and as well as the number of positive and negative charges.
The Lewis and Langmuir theory of electrovalency (and as well as Kossel's) is dealing with Ionic bonds.
Lewis: electron-pair sharing, octet rule, Lewis Symbols or StructureLangmuir: introduced term "covalent" bond, and popularized Lewis's ideas
<span>The Lewis-Langmuir electron-pair or covalent bond is referred as the homopolar bond, where the complete transfer of electrons give rise to ionic, or electrovalent bond (1) through attraction of opposite charges.</span>
The most common reaction that causes spoilage isn't a reaction at all. Molds and Bacteria are attracted to the easily found presence of water in the fruit. They find a natural place to reproduce and what they do causes spoilage.
Very few sources talk about the chemical changes that take place. If you put fruit in a refrigerator it slows the spoiling process down. That means that the chemical reaction has to be endothermic (it requires heat to occur)
The process of spoilage is speeded up by bananas for example, giving up Ethylene gas. You do not want to put a banana with tomatoes, because tomatoes are very sensitive to Ethylene. (It's OK to eat them together. They make a terrific salad. Yum).
I cannot find a definitive source that connects all this together, but the conduct of the fruit in refrigerators confirms what I am saying.
Spoilage is a very complex reaction and interaction with the environment. I have given you a hint of what happens but you should search it out to convince yourself of the outcome.
Answer:
0.554M of Calcium Bromide
Explanation:
Molarity by defintion is #of moles of something/litres of solution.
Therefore, here, we have 0.277 moles of calcium bromide and 500mL (divide 500ml by 1000 to go from mL to L because for every 1L there's 1000mL) or 0.5L.
Molarity= 0.277/0.5 = 0.554M of Calcium Bromide