Answer:
correct is d) a ’= g / 2
Explanation:
For this exercise let's use the kinematics equations
On earth
v = v₀ - a t
a = (v₀- v) / T
On planet X
v = v₀ - a' t’
a ’= (v₀-v) / 2T
Let's substitute the land values in plot X
a’= a / 2
Now let's use Newton's second law
W = ma
m g = m a
a = g
We substitute
a ’= g / 2
So we see that on planet X the acceleration is half the acceleration of Earth's gravity
Answer:

Explanation:
<u>Given:</u>
- Diameter of the plates of the capacitor, D = 21 cm = 0.21 m.
- Distance of separation between the plates, d = 1.0 cm = 0.01 m.
- Minimum value of electric field that produces spark,

When the dimensions of the plate of the capacitor is comparatively much larger than the distance of separation between the plates, then, according to the Gauss' law of electrostatics, the value of the electric field strength in the region between the plates of the capacitor is given by

where,
= surface charge density of the plate of the capacitor =
.
= magnitude of the charge on each of the plate.
= surface area of each of the plate =
= electrical permittivity of free space, having value = 
For the minimum value of electric field that produces spark,

It is the maximum value of the magnitude of charge which can be added up to each of the plates of the capacitor.
Air resistance doesn't appear in the formula for gravitational force, because it doesn't affect it. Mass does because it does.
According to Boyle's Law, volume is inversely proportional to pressure. It means
if the volume of a gas goes up the pressure goes down and if the volume of the gas goes up the pressure goes down. When the pressure of air inside the inflated balloon is more than the atmospheric pressure outside the balloon. And also when the density inside is greater than the density outside. The molecules inside the balloon move and bang around the inner walls which produces force, which provides the pressure of an enclosed air.