Answer:
r = 0.86
Explanation:
Correlation coefficients are the strength of the relationship between two variables.
Correlations can indicate anywhere between
- 1 - for a strong positive relationship.
- -1 - for a strong negative relationship.
- 0 - for no relationship at all.
Looking at sample correlation coefficient formula which says
=
÷ (
×
)
where
and
are the sample deviations and
is the sample covariance, all of which will remain the same for Maria and John.
Hence, John's correlation will be approximately 0.86 since he would have approximately the same measurement as Maria's measurement when Maria's measurement is converted from centimeters to inches.
Answer:
Heat is transfered via solid material (conduction), liquids and gases (convection), and electromagnetical waves (radiation).
Feel free to ask...follow me
Answer:
So lift will be 30.19632 N
Explanation:
We have given area of the wing 
We know that density of air 
Speed at top surface
and speed at bottom surface 
According to Bernoulli's principle force is given by
Mass of yellow train, my = 100 kg
Initial Velocity of yellow train, = 8 m/s
mass of orange train = 200 kg
Initial Velocity of orange train = -1 m/s (since it moves opposite direction to the yellow train, we will put negative to show the opposite direction)
To calculate the initial momentum of both trains, we will use the principle of conservation of momentum which
The sum of initial momentum = the sum of final momentum
Since the question only wants the sum of initial momentum,
(100)(8) + (200)(-1) = 600 m/s
Special relativity led the path for general relativity; special relativity is in a sense a special application of the rules of general relativity. While general relativity is in position to tackle all of these problems, special relativity can tackle only problems in inertial frames. Inertial frame means that the frame of reference is inot accelerating. So, we disqualify answers A and D. However, remember that moving in a circle means that there is an acceleration, the centrifugal one, even if the speed does not change. Hence C is also incorrect.
The correct answer is B, since if there is no change in velocity, the frame does not accelerate and it is inertial.