Answer:
d = 375 m
Explanation:
The speed of sound is constant in any medium, therefore we can use the uniform motion relationships
v = x / t
x = v t
In this case it indicates that the time since the sound is emitted and received is t = 0.50 s, in this time the sound traveled a round trip distance
x = 2d
2d = v t
d = v t/2
let's calculate
d = 1500 0.5 / 2
d = 375 m
Answer:

Explanation:
Mass of a hockey puck, m = 0.17 kg
Force exerted by the hockey puck, F' = 35 N
The force of friction, f = 2.7 N
We need to find the acceleration of the hockey puck.
Net force, F=F'-f
F=35-2.7
F=32.3 N
Now, using second law of motion,
F = ma
a is the acceleration of the hockey puck

So, the acceleration of the hockey puck is
.
Answer:
C.) The Distance DH = 1.5 lambda
Explanation:
This statement C.) is false, because it does not count as the 1.5 wavelength, it is less than 1 wavelength.
The answer is voice onset time. It is a part of the production of stop consonants. Its definition is the length of time that passes between the release of a stop consonant and the start of the voicing and the vibration of the vocal folds.
It acquires a charge through electrons.
Hope this helps!!!^_~!!!