Answer: I do
Explanation:
Resistance opposes current thereby reducing the amount of current that flows through a circuit. In other words, it leads to a loss of electrical energy.
Ideally speaking, a good circuit should have no internal resistance as this would lead to more energy having to be supplied to overcome that resistance. External resistance however, is not a bad thing. For instance, oxygen being removed from lightbulbs.
At point E
- the kinetic energy of the rollercoaster is small compared to the potential energy
- the potential energy is greater than the kinetic energy
- the total energy is a mixture of potential and kinetic energy
<h3>What is the energy of the roller coaster at point E?</h3>
The energy of a roller coaster could either be potential energy, kinetic energy or a combination of both potential and kinetic energy.
Using analogies, the energy of the roller coaster at point E can be compared to a falling fruit from a tree which falls onto a pavement and is the rolling towards the floor. Point E can be compared to the midpoint of the fall of the fruit.
At point E
- the kinetic energy of the rollercoaster is small compared to the potential energy
- the potential energy is greater than the kinetic energy
- the total energy is a mixture of potential and kinetic energy
In conclusion, the energy of the rollercoaster at E is both Kinetic and potential energy,
Learn more about potential and kinetic energy at: brainly.com/question/18963960
#SPJ1
A persons or animals nature, especially as it permanently affects their behavior
Answer:
a= -0.83m\s^2
Explanation:
a = v \ t
a = -25 \ 30 = -0.833 m\s^2
the object is slowing down 0.83 meter every second
Answer:
Power is 1061.67W
Explanation:
Power=force×distance/time
Power=65×9.8×15/9 assuming gravity=9.8m/s²
Power=3185/3=1061.67W