1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SVEN [57.7K]
2 years ago
10

The masses of the two moons are determined to be 2M2M for Moon AA and MM for Moon BB . It is observed that the distance between

Moon BB and the planet is two times that of the distance between Moon AA and the planet. How does force exerted from the planet on Moon AA compare to the force exerted from the planet on Moon BB
Physics
2 answers:
seraphim [82]2 years ago
7 0

Answer:

 F_A = 8 F_B

Explanation:

The force exerted by the planet on each moon is given by the law of universal gravitation

        F = G \frac{m M}{r^{2} }

where M is the mass of the planet, m the mass of the moon and r the distance between its centers

let's apply this equation to our case

Moon A

the distance between the planet and the moon A is r and the mass of the moon is 2m

        F_A = G \frac{2m M}{r^{2} }

Moon B

        F_B = G \frac{m M}{(2r)^{2} }

         F_B = G \frac{m M}{4 r^{2} }

the relationship between these forces is

         F_B / F_A = \frac{1}{2 \ 4 } = 1/8

         F_A = 8 F_B

Kobotan [32]2 years ago
7 0

Answer:

F_A = 8 F_B

Explanation:

The force exerted by the planet on each moon is given by the law of universal gravitation

       F =

where M is the mass of the planet, m the mass of the moon and r the distance between its centers

let's apply this equation to our case

Moon A

the distance between the planet and the moon A is r and the mass of the moon is 2m

       F_A = G \frac{2m M}{r^{2} }

Moon B

       F_B = G \frac{m M}{(2r)^{2} }

        F_B = G \frac{m M}{4 r^{2} }

the relationship between these forces is

        F_B / F_A =  = 1/8

        F_A = 8 F_B

You might be interested in
Learning Goal:
enot [183]

Answer:

A. U_0 = \dfrac{\epsilon_0 A V^2}{2d}

B. U_1 = \dfrac{\epsilon_0 A V^2}{6d}

C. U_2 = \dfrac{K\epsilon_0 A V^2}{2d}

Explanation:

The capacitance of a capacitor is its ability to store charges. For parallel-plate capacitors, this ability depends the material between the plates, the common plate area and the plate separation. The relationship is

C=\dfrac{\epsilon A}{d}

C is the capacitance, A is the common plate area, d is the plate separation and \epsilon is the permittivity of the material between the plates.

For air or free space, \epsilon is \epsilon_0 called the permittivity of free space. In general, \epsilon=\epsilon_r \epsilon_0 where \epsilon_r is the relative permittivity or dielectric constant of the material between the plates. It is a factor that determines the strength of the material compared to air. In fact, for air or vacuum, \epsilon_r=1.

The energy stored in a capacitor is the average of the product of its charge and voltage.

U = \dfrac{QV}{2}

Its charge, Q, is related to its capacitance by Q=CV (this is the electrical definition of capacitance, a ratio of the charge to its voltage; the previous formula is the geometric definition). Substituting this in the formula for U,

U = \dfrac{CV^2}{2}

A. Substituting for C in U,

U_0 = \dfrac{\epsilon_0 A V^2}{2d}

B. When the distance is 3d,

U_1 = \dfrac{\epsilon_0 A V^2}{2\times3d}

U_1 = \dfrac{\epsilon_0 A V^2}{6d}

C. When the distance is restored but with a dielectric material of dielectric constant, K, inserted, we have

U_2 = \dfrac{K\epsilon_0 A V^2}{2d}

6 0
3 years ago
A positive charge +q1 is located to the left of a negative charge -q2. On a line passing through the two charges, there are two
AfilCa [17]

Answer:

please the answer below

Explanation:

(a) If we assume that our origin of coordinates is at the position of charge q1, we have that the potential in both points is

V_1=k\frac{q_1}{r-1.0}-k\frac{q_2}{1.0}=0\\\\V_2=k\frac{q_1}{r+5.2}-k\frac{q_2}{5.2}=0\\\\

k=8.89*10^9

For both cases we have

k\frac{q_1}{r-1.0}=k\frac{q_2}{1.0}\\\\q_1(1.0)=q_2(r-1.0)\\\\r=\frac{q_1+q_2}{q_2}\\\\k\frac{q_1}{r+5.2}=k\frac{q_2}{5.2}\\\\q_1(5.2)=q_2(r+5.2)\\\\r=\frac{5.2q_1-5.2q_2}{q_2}

(b) by replacing this values of r in the expression for V we obtain

k\frac{q_1}{\frac{5.2(q_1-q_2)}{q_2}+5.2}=k\frac{q_2}{5.2}\\\\\frac{q_1}{q_2}=\frac{(q_1-q_2)}{q_2}-1.0=\frac{q_1-q_2-q_2}{q_2}=\frac{q_1-2q_2}{q_2}

hope this helps!!

3 0
3 years ago
Read 2 more answers
what is the average gravitational force of attraction between the earth and the sun? the earth averages a distance of about 150
Tanzania [10]

Answer:

B

Explanation:

Hhhhh

5 0
2 years ago
what would happen when an inflated balloon is place in an ice bath and the atmosphere pressure has not changed?
ruslelena [56]

The inflated balloon shrinks when it is placed in an ice bath with no change in atmospheric pressure.  

<u>Explanation:</u>

        When the inflated balloon is subjected to an ice bath, it shrinks. This is due to the fact that smaller volume gets occupied by the air/gas inside the balloon as the temperature decreases. Hence, causes the balloon walls to collapse.  

         An ice bath also lowers the overall air temperature of the balloon inside. As the temperature decreases, the air molecules move more slowly and with lower energy. Because of the particle's lower energy, their collisions with the walls are not enough to keep the inflated balloon.

7 0
2 years ago
A weightlifter is attempting a biceps curl with a 200 n barbell. the moment arm of the barbell about the elbow joint is 40 cm. t
CaHeK987 [17]
Weight of the barbell W = 200 Ndistance of the joint is r = 40 cm = 0.4 mtorque created by the weight at the joint is                  τ = F*r                     = 200 N*0.4 m                     = 80 N.mat equilibrium condition ,    Στ = force*distance - 80 N.m = 0             F'*0.4 - 80 N.m = 0             F'*0.4 = 80          force F' = 200 N
4 0
3 years ago
Other questions:
  • Five hundred joules of heat are added to a closed system. The initial internal energy of the system is 87 J, and the final inter
    5·2 answers
  • The roads are icy, and you observe a head-on collision on Summit, at the corner with Rhodes: a 1ton car swerves out of his lane
    7·1 answer
  • An arctic fox has thick, dense fur in the winter and much shorter fur in the summer. How does this help the fox maintain homeost
    14·2 answers
  • Someone pls help me will give brainlist
    12·1 answer
  • At a certain instant the current flowing through a 5.0-H inductor is 3.0 A. If the energy in the inductor at this instant is inc
    15·1 answer
  • A force of 166 N acts on a 7.05-kg bowling ball for .39 seconds . What is the bowling balls change in velocity
    15·2 answers
  • What state has the longest coast
    9·1 answer
  • While standing at the edge of the roof of a building, a man throws a stone upward with an initial speed of 7.07 m/s. The stone s
    14·1 answer
  • Question 3 (3 points) ✓ Saved
    9·1 answer
  • Block A has mass 1.00 kg and block B has mass 3.00 kg. The blocks collide and stick together on a level, frictionless surface. A
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!