Element at Extreme Left In Periodic Table:
The elements of Group I-A (1) are present at extreme left of the periodic table. They are called as Alkali Metals. Alkali Metals are strong metals. These elements can easily loose their valence electron. The valence shell electronic configuration of these elements is,
ns¹
where n is principle quantum number, which shows main energy level or shell. These metals can gain Noble gas configuration (stable configuration) either by loosing one electron or by gaining seven or more electrons. As it is quite reasonable to loose one electron instead of gaining seven or more electrons so these element easily loose one electron to gain noble as configuration. The Metallic character decreases along the period from left to right. So Group II-A (2) are second most metallic elements and so on. These metals at extreme left mainly exist in solid form.
Element at Extreme Right In Periodic Table:
Elements present at extreme right of the periodic table lacks the properties of metallic character and act as non-Metals. They have almost complete outermost shell or have the deficiency of one or two electrons. They are not as hard as metallic elements and they exist with complete octet like in Noble gases, or deficient with one electron (Halogens) or two electrons (oxygen group). These elements tend to gain or accept electron if their valence shell is deficient with required number of elements. Like the valence electronic configuration of Halogens is,
ns², np⁵
So, Halogens readily accept one electron and attain noble gas configuration. Elements at extreme left exist mainly in gas phase.
Answer: The mass of the displaced liquid is equal to the volume of the liquid multiplied by its density. When a boat is placed in water, the volume of displaced water is equal to the mass of the boat.
I hope this helped!
Answer : The correct option is, (C) 2, 4 and 5.
Explanation :
Combustion reaction : It is a type of reaction in which a hydrocarbon react with an oxygen molecule to give carbon dioxide, water as a product.
For example : Methane react with oxygen to give carbon dioxide and water.

In the given list of chemical substances,
are in oxide form. They can not be both reactant and product of a single combustion reaction.
In the given list,
is the only hydrocarbon which shows a combustion reaction. That means
react with
to give
and
as a product.
The balanced combustion reaction of
is,

Therefore, the correct answer is, (C) 2, 4, and 5.
Answer:
Part 1: 7.42 mL; Part 2: 3Cu²⁺(aq) + 2PO₄³⁻(aq) ⟶ 2Cu₃(PO₄)₂(s)
Explanation:
Part 1. Volume of reactant
(a) Balanced chemical equation.

(b) Moles of CuCl₂

(c) Moles of Na₃PO₄
The molar ratio is 2 mmol Na₃PO₄:3 mmol CuCl₂

(d) Volume of Na₃PO₄

Part 2. Net ionic equation
(a) Molecular equation

(b) Ionic equation
You write molecular formulas for the solids, and you write the soluble ionic substances as ions.
According to the solubility rules, metal phosphates are insoluble.
6Na⁺(aq) + 2PO₄³⁻(aq) + 3Cu²⁺(aq) + 6Cl⁻(aq) ⟶ Cu₃(PO₄)₂(s) + 6Na⁺(aq) + 6Cl⁻(aq)
(c) Net ionic equation
To get the net ionic equation, you cancel the ions that appear on each side of the ionic equation.
<u>6Na⁺(aq)</u> + 2PO₄³⁻(aq) + 3Cu²⁺(aq) + <u>6Cl⁻(aq)</u> ⟶ Cu₃(PO₄)₂(s) + <u>6Na⁺(aq)</u> + <u>6Cl⁻(aq)</u>
The net ionic equation is
3Cu²⁺(aq) + 2PO₄³⁻(aq) ⟶ Cu₃(PO₄)₂(s)
Because a good stepping stone would be a solid and if that solid were to melt or turn to gas you’d have no stepping stone.