Answer:
Yes
Explanation:
Denatured ethanol fuel is a polar solvent, which is soluble in water. A
Polar solvent is a compound with a charge separation in chemical bonds, such as alcohol, most acids, or ammonia. These have affinity with water and will dissolve easily. Denatured fuel ethanol has a flash point of -5 ° F and a vapor density of 1.5, indicating that it is heavier than air.
Consequently, ethanol vapors do not rise, similar to the gasoline vapors they are looking for lower altitudes. The specific gravity of denatured fuel ethanol is 0.79, which indicates that it is lighter than water and has a self-ignition temperature of 709 ° F and a boiling point of 165-175 ° F. Like gasoline, the most denatured fuel, the greatest danger of ethanol as an engine fuel component is its flammability.
It has a wider flammable range than gasoline (LEL is 3% and UEL is 19%).
Answer:
decrease the volume of the cylinder.
Explanation:
In order to be able to solve this question we have to understand what Boyle's law is. According to Boyle's law; at constant temperature the pressure of a given mass of gas is inversely proportional to to its volume.
The Boyle's law shows us the relationship between the pressure and the volume. So, the Important thing to note hear is that if the volume in a container is decreased then the pressure will increase (and vice versa) due to the fact that as the volume decreases the particles in that container makes more collision which will make the pressure to increase.
Since, the piston is moveable it means that we can decrease and increase the volume in the cylinder. So, if the decrease the volume of the cylinder then we will have an increase in the pressure of the gas below the piston.
When you want to melt an ice, you only need the latent energy of fusion, <span>δhfus. We use the given value, then multiply this with the given amount to determine the amount of energy. Since the energy is per mole basis, use the molar mass of ice which is 18 g/mol. The solution is as follows:
</span>ΔH = 5.96 kJ/mol * 1 mol/18 g * 500 g
<em>ΔH = 165.56 kJ</em><span>
</span>
To be able to answer this item, we assume that the given hydrogen gas is ideal such that we are able to use the Ideal Gas equation,
PV = nRT
At STP, the values of volume, pressure, and temperature are 22.4 L, 1 atm, and 273.15 K. Solving for n,
n = (1 atm x 22.4 L) / (0.0821 L.atm/mol K x 273.15 K)
n = 0.9988 mols
Each mol of hydrogen gas is 2 g.
m = (0.9988 mols) x (2 g/1 mol)
m = 1.9977 g
Density is the quotient of mass and volume,
density = 1.9977 g/ 22400 mL
density = 8.92 x 10^-5 g/mL