Answer:
D
Explanation:
I hope this right, I'm sorry if it's not.
For an atom to be neutral, it has to have the same amount of protons and electrons. Because protons and electrons have opposite charges, when there is an equal amount of them they balance each other out
Answer:
The pressure will be 0.4 atm.
Explanation:
The gas laws are a set of chemical and physical laws that allow determining the behavior of gases in a closed system. The parameters evaluated in these laws are pressure, volume, temperature and moles.
As the volume increases, the gas particles (atoms or molecules) take longer to reach the walls of the container and therefore collide with them less times per unit of time. This means that the pressure will be lower because it represents the frequency of collisions of the gas against the walls. In this way pressure and volume are related, determining Boyle's law which says:
"The volume occupied by a certain gaseous mass at constant temperature is inversely proportional to pressure"
Boyle's law is expressed mathematically as:
P*V= k
If you initially have the gas at a volume V1 and press P1, when the conditions change to a volume V2 and pressure P2, the following is satisfied:
P1*V1= P2*V2
In this case:
- P1= 1.2 atm
- V1= 4 L
- P2= ?
- V2= 12 L
Replacing:
1.2 atm* 4 L= P2* 12 L
Solving:

P2= 0.4 atm
<u><em>The pressure will be 0.4 atm.</em></u>
The empirical and molecular formulas will be
and
respectively.
<h3>Empirical and molecular formula</h3>
The compound contains C, H, and O.
C = 61.15/12 = 5.0958
H = 5.3/1 = 5.3
O = 31.55/16 = 1.9719
Divide by the smallest
C = 2.6
H = 2.7
O = 1
Thus, the empirical formula is 
Empirical formula mass = (12x5) + (1x5) + 16x2 = 97
n = 152.15/97 = 2
The molecular formula is 
More on molecular and empirical formulas can be found here: brainly.com/question/14425592
#SPJ1
Answer:

Explanation:
Hello,
In this case, since silver is initially hot as it cools down, the heat it loses is gained by the liquid, which can be thermodynamically represented by:

That in terms of the heat capacities, masses and temperature changes turns out:

Since no phase change is happening. Thus, solving for the heat capacity of the liquid we obtain:

Best regards.
B. A solar cycle usually lasts 11 years.