6/9 is equal to 2/3 is equal to 4/6. Equivalent fraction visually. Equivalent fractions on the number line. Equivalent fractions on the number line.
Answer:
To work out the percentage, all you have to do is divide the first subject by the second and multiply that by 100%.
In other words, ![\frac{\$10}{\$10} \cdot 100\%](https://tex.z-dn.net/?f=%5Cfrac%7B%5C%2410%7D%7B%5C%2410%7D%20%5Ccdot%20100%5C%25)
= ![1 \cdot 100\%](https://tex.z-dn.net/?f=1%20%5Ccdot%20100%5C%25)
=
.
Step-by-step explanation:
Hope this helped!
Answer:
![\angle PRQ = 80](https://tex.z-dn.net/?f=%5Cangle%20PRQ%20%3D%2080)
Step-by-step explanation:
Given
![\angle SPR = 145^o](https://tex.z-dn.net/?f=%5Cangle%20SPR%20%3D%20145%5Eo)
![\angle POT = 115^o](https://tex.z-dn.net/?f=%5Cangle%20POT%20%3D%20115%5Eo)
See attachment
Required
Find ![\angle PRO](https://tex.z-dn.net/?f=%5Cangle%20PRO)
First, calculate ![\angle RPO](https://tex.z-dn.net/?f=%5Cangle%20RPO)
--- angle on a straight line
So, we have:
![\angle RPO + 145 = 180](https://tex.z-dn.net/?f=%5Cangle%20RPO%20%2B%20145%20%3D%20180)
Collect like terms
![\angle RPO = 180 - 145](https://tex.z-dn.net/?f=%5Cangle%20RPO%20%3D%20180%20-%20145)
![\angle RPO = 35](https://tex.z-dn.net/?f=%5Cangle%20RPO%20%3D%2035)
Next, calculate PQR
![\angle POR + \angle POT = 180](https://tex.z-dn.net/?f=%5Cangle%20POR%20%2B%20%5Cangle%20POT%20%3D%20180)
So, we have:
![\angle POR + 115 = 180](https://tex.z-dn.net/?f=%5Cangle%20POR%20%2B%20115%20%3D%20180)
Collect like terms
![\angle POR = 180-115](https://tex.z-dn.net/?f=%5Cangle%20POR%20%3D%20180-115)
![\angle POR = 65](https://tex.z-dn.net/?f=%5Cangle%20POR%20%3D%2065)
So, PRO is calculated as:
--- angles in a triangle
So, we have:
![\angle PRO + 65 + 35= 180](https://tex.z-dn.net/?f=%5Cangle%20PRO%20%2B%2065%20%2B%2035%3D%20180)
![\angle PRO + 100= 180](https://tex.z-dn.net/?f=%5Cangle%20PRO%20%2B%20100%3D%20180)
Collect like terms
![\angle PRO = 180-100](https://tex.z-dn.net/?f=%5Cangle%20PRO%20%3D%20180-100)
![\angle PRO = 80](https://tex.z-dn.net/?f=%5Cangle%20PRO%20%3D%2080)
Answer: Yes
Step-by-step explanation: hope it helps
Hello there!
The would be a (right angle) because this angle is not greater than, or less than 90°.
Your correct answer would be the first option. (right angle).