Explanation:
It is given that,
Initially the car is at rest and travels for t₁ seconds with a uniform acceleration a₁. The driver then applies the brakes, causing a uniform acceleration a₂, If the brakes are applied for t₂ seconds.
We need to find the speed of the car just before the beginning of the braking period.
Using the formula of acceleration. It is given by :

u = 0

So, just before the beginning of the braking period the speed of the car is
. Hence, this is the required solution.
Answer:
Power = 21.6 Watts
Explanation:
Power = 
Where W = work and t = time.
W = Fs
Where F is force and s is displacement.
29.6N(5.9m) = 174.64J
W = 174.64J
Power = 
Power = 21.6 Watts
Answer:
(a) 7.315 x 10^(-14) N
(b) - 7.315 x 10^(-14) N
Explanation:
As you referred at the final remark, the electron and proton undergo a magnetic force of same magnitude but opposite direction. Using the definition of magnetic force, a cross product must be done. One technique is either calculate the magnitude of the velocity and magnetic field and multiplying by sin (90°), but it is necessary to assure both vectors are perpendicular between each other ( which is not the case) or do directly the cross product dealing with a determinant (which is the most convenient approach), thus,
(a) The electron has a velocity defined as: ![\overrightarrow{v}=(2.4x10^{6} i + 3.6x10^{6} j) \frac{[m]}{[s]}\\\\](https://tex.z-dn.net/?f=%5Coverrightarrow%7Bv%7D%3D%282.4x10%5E%7B6%7D%20i%20%2B%203.6x10%5E%7B6%7D%20j%29%20%5Cfrac%7B%5Bm%5D%7D%7B%5Bs%5D%7D%5C%5C%5C%5C)
In respect to the magnetic field; ![\overrightarrow{B}=(0.027 i - 0.15 j) [T]](https://tex.z-dn.net/?f=%5Coverrightarrow%7BB%7D%3D%280.027%20i%20-%200.15%20j%29%20%5BT%5D)
The magnetic force can be written as;
![\overrightarrow{F} = q(\overrightarrow{v} x \overrightarrow{B})\\ \\\\\overrightarrow{F}= q \left[\begin{array}{ccc}i&j&k\\2.4x10^{6}&3.6x10^{6}&0\\0.027&-0.15&0\end{array}\right]](https://tex.z-dn.net/?f=%5Coverrightarrow%7BF%7D%20%3D%20q%28%5Coverrightarrow%7Bv%7D%20x%20%5Coverrightarrow%7BB%7D%29%5C%5C%20%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%20q%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C2.4x10%5E%7B6%7D%263.6x10%5E%7B6%7D%260%5C%5C0.027%26-0.15%260%5Cend%7Barray%7D%5Cright%5D)
Bear in mind
thus,
![\overrightarrow{F}= q \left[\begin{array}{ccc}i&j&k\\2.4x10^{6}&3.6x10^{6}&0\\0.027&-0.15&0\end{array}\right]\\\\\\\overrightarrow{F}= q(2.4x10^{6}* (-0.15)- (0.027*3.6x10^{6}))\\\\\\\overrightarrow{F}= -1.6021x10^{-19} [C](-457200) [T]\frac{m}{s}\\\\\overrightarrow{F}=(7.3152x10^{-14}) k [\frac{N*m/s}{C*m/s}]\\\\|F|= \sqrt{ (7.3152x10^{-14})^{2}[N]^2 *k^{2}}\\\\F=7.3152x10^{-14} [N]](https://tex.z-dn.net/?f=%5Coverrightarrow%7BF%7D%3D%20q%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C2.4x10%5E%7B6%7D%263.6x10%5E%7B6%7D%260%5C%5C0.027%26-0.15%260%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%20q%282.4x10%5E%7B6%7D%2A%20%28-0.15%29-%20%280.027%2A3.6x10%5E%7B6%7D%29%29%5C%5C%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%20-1.6021x10%5E%7B-19%7D%20%5BC%5D%28-457200%29%20%5BT%5D%5Cfrac%7Bm%7D%7Bs%7D%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%287.3152x10%5E%7B-14%7D%29%20k%20%5B%5Cfrac%7BN%2Am%2Fs%7D%7BC%2Am%2Fs%7D%5D%5C%5C%5C%5C%7CF%7C%3D%20%5Csqrt%7B%20%287.3152x10%5E%7B-14%7D%29%5E%7B2%7D%5BN%5D%5E2%20%2Ak%5E%7B2%7D%7D%5C%5C%5C%5CF%3D7.3152x10%5E%7B-14%7D%20%5BN%5D)
Note: The cross product is operated as a determinant. Likewise, the product of the unit vector k is squared and that is operated as dot product whose value is equal to one, i.e, 
(b) Considering the proton charge has the same magnitude as electron does, but the sign is positive, thus
![\overrightarrow{F}= q \left[\begin{array}{ccc}i&j&k\\2.4x10^{6}&3.6x10^{6}&0\\0.027&-0.15&0\end{array}\right]\\\\\\\overrightarrow{F}= q(2.4x10^{6}* (-0.15)- (0.027*3.6x10^{6}))\\\\\\\overrightarrow{F}= 1.6021x10^{-19} [C](-457200) [T]\frac{m}{s}\\\\\overrightarrow{F}=(-7.3152x10^{-14}) k [\frac{N*m/s}{C*m/s}]\\\\|F|= \sqrt{ (-7.3152x10^{-14})^{2}[N]^2 *k^{2}}\\\\F=-7.3152x10^{-14} [N]](https://tex.z-dn.net/?f=%5Coverrightarrow%7BF%7D%3D%20q%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C2.4x10%5E%7B6%7D%263.6x10%5E%7B6%7D%260%5C%5C0.027%26-0.15%260%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%20q%282.4x10%5E%7B6%7D%2A%20%28-0.15%29-%20%280.027%2A3.6x10%5E%7B6%7D%29%29%5C%5C%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%201.6021x10%5E%7B-19%7D%20%5BC%5D%28-457200%29%20%5BT%5D%5Cfrac%7Bm%7D%7Bs%7D%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%28-7.3152x10%5E%7B-14%7D%29%20k%20%5B%5Cfrac%7BN%2Am%2Fs%7D%7BC%2Am%2Fs%7D%5D%5C%5C%5C%5C%7CF%7C%3D%20%5Csqrt%7B%20%28-7.3152x10%5E%7B-14%7D%29%5E%7B2%7D%5BN%5D%5E2%20%2Ak%5E%7B2%7D%7D%5C%5C%5C%5CF%3D-7.3152x10%5E%7B-14%7D%20%5BN%5D)
Note: The cross product is operated as a determinant. Likewise, the product of the unit vector k is squared and that is operated as dot product whose value is equal to one, i.e, 
Final remarks: The cross product was performed in R3 due to the geometrical conditions of the problem.
Answer:
Earth's interior (Core)
Explanation:
The earth is comprised of 3 distinct layers namely the Core, the Mantle and the Crust, which are divided based on their composition as well as density.
The core of the earth is extremely very hot where the inner core remains solid and outer core acts a liquid. It is mainly comprised of iron, nickel and other siderophile elements.
A large amount of heat (energy) is radiated from this core region towards the surface of the earth. Due to this, the mantle rocks forms magma that creates the convection currents, where the hot and less dense magma rises upward and the cool and denser magma sinks to the bottom. This occurs continuously, as a result of which the lithospheric plates are forced to move over the less dense layer of asthenosphere.
Thus, the heat energy that drives the convection current in the mantle is provided from the interior (core) of the earth.
Answer:
nerve pathways
Explanation:
It is called Neurogenic Bladder (VN) to any alteration of bladder behavior due to a pathology of the central and / or peripheral nervous system. It may consist of the loss of storage and / or urine disposal capabilities. Thus, a lesion in the upper centers causes variation in storage capacity, but if peripheral innervation is affected, loss of emptying capacity occurs. In the case of patients with spinal cord injury (ML) there are changes in both at the same time.