Answer:
Missing Details, Most Are Approximations,Simplicity
Explanation:
I just had this question
Answer:
4 A
Explanation:
V = IR, where V=voltage, I=current, R=resistance. This is Ohm's Law. (remember that for units V = volts, Ω = ohms, A = amperes.)
V = IR
12 V = I * 3 Ω
12/3 = I
<u>I = 4 A</u>
<h2>Right answer: acceleration due to gravity is always the same </h2><h2 />
According to the experiments done and currently verified, in vacuum (this means there is not air or any fluid), all objects in free fall experience the same acceleration, which is <u>the acceleration of gravity</u>.
Now, in this case we are on Earth, so the gravity value is
Note the objects experience the acceleration of gravity regardless of their mass.
Nevertheless, on Earth we have air, hence <u>air resistance</u>, so the afirmation <em>"Free fall is a situation in which the only force acting upon an object is gravity" </em>is not completely true on Earth, unless the following condition is fulfiled:
If the air resistance is <u>too small</u> that we can approximate it to <u>zero</u> in the calculations, then in free fall the objects will accelerate downwards at
and hit the ground at approximately the same time.
Answer:
Both balls will hit the ground at the same time
Explanation:
The factor which leads to ball falling is the gravity acting on the ball;
The motions along the path of both balls are independent and both balls will obey the following illustration
Using the third equation of motion
s = ut + ½at²
Where s = distance covered by both balls.
u = initial velocity of both balls. Since both balls start from rest, u = 0m/s
a = acceleration; and it's equal to acceleration due to gravity.
a = g
By substituton
s = 0 * t + ½gt²
s = 0 + ½gt²
s = ½gt²
Make t the subject of formula
gt² = 2s
t² = 2s/g
t = ±√(2s/g)
But time can't be less than 0 (in other words, negative)
So,
t = √(2s/g)
It'll take both balls √(2s/g) time to hit the floor