Answer:
discrete lines are observed by the spectroscope, the emission of the lamp is of the ATOMIC source
Explanation:
Bulbs can emit light in several ways:
* When the emission is carried out by the heating of its filament, the bulb is called incandescent, in general its spectrum is similar to that of a black body, this is a continuous spectrum with a maximum dependent on the fourth power of the temperature of the filament.
* The emission can be by atomic transitions, in this case there is a discrete spectrum formed by the spectral lines of the material that forms the gas of the lamp, in general for the yellow emission the most used materials are mercury and sodium or a mixture of they.
Consequently, as discrete lines are observed by the spectroscope, the emission of the lamp is of the ATOMIC type
Answer:
the watt is the unit of power or radiant flax
Answer:
a) 
b)
º
c) 
Explanation:
From the exercise we know that the collision between Daniel and Rebecca is elastic which means they do not stick together
So, If we analyze the collision we got

To simplify the problem, lets name D for Daniel and R for Rebecca
a) 
Since Daniel's initial velocity is 0



Now, lets analyze the movement in the vertical direction

Since 


Now, we can find the magnitude of Daniel's velocity after de collision

b) To know whats the direction of Daniel's velocity we need to solve the arctan of the angle
º
c) The change in the total kinetic energy is:
ΔK=
ΔK=![\frac{1}{2}[(45kg)(8m/s)^2+(70kg)(7.32m/s)^2-(45kg)(14m/s)^2]=-1094.62J](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%5B%2845kg%29%288m%2Fs%29%5E2%2B%2870kg%29%287.32m%2Fs%29%5E2-%2845kg%29%2814m%2Fs%29%5E2%5D%3D-1094.62J)
That means that the kinetic energy decreases
dnxjjc cjgnjgjnffjnfkfmgkcknsmksjs dmxmcmfkcnfjcnfjfnfjf in jfnfifnfifnf
Answer
given,
diameter of planet = 1.8 x 10⁷ m
radius of planet = 0.9 x 10⁷ m
time period = 22.3 hours
the planet orbits 2.2 x 10¹¹ m period of 402 earth days.
acceleration= 12.2 m/s²
we know



M_p = 1.48 x 10²⁵ Kg
b) Formula to calculate the mass of star


M_s = 5.22 x 10³³ Kg