Answer:
0.546 
Explanation:
From the given information:
The force on a given current-carrying conductor is:

where the length usually in negative (x) direction can be computed as

Now, taking the integral of the force between x = 1.0 m and x = 3.0 m to get the value of the force, we have:



![F = I (9.0) \bigg [\dfrac{x^3}{3} \bigg ] ^3_1 \hat k](https://tex.z-dn.net/?f=F%20%3D%20I%20%20%289.0%29%20%5Cbigg%20%5B%5Cdfrac%7Bx%5E3%7D%7B3%7D%20%5Cbigg%20%5D%20%5E3_1%20%5Chat%20k)
![F = I (9.0) \bigg [\dfrac{3^3}{3} - \dfrac{1^3}{3} \bigg ] \hat k](https://tex.z-dn.net/?f=F%20%3D%20I%20%20%289.0%29%20%5Cbigg%20%5B%5Cdfrac%7B3%5E3%7D%7B3%7D%20-%20%5Cdfrac%7B1%5E3%7D%7B3%7D%20%5Cbigg%20%5D%20%20%5Chat%20k)
where;
current I = 7.0 A
![F = (7.0 \ A) (9.0) \bigg [\dfrac{27}{3} - \dfrac{1}{3} \bigg ] \hat k](https://tex.z-dn.net/?f=F%20%3D%20%287.0%20%5C%20A%29%20%20%289.0%29%20%5Cbigg%20%5B%5Cdfrac%7B27%7D%7B3%7D%20-%20%5Cdfrac%7B1%7D%7B3%7D%20%5Cbigg%20%5D%20%20%5Chat%20k)
![F = (7.0 \ A) (9.0) \bigg [\dfrac{26}{3} \bigg ] \hat k](https://tex.z-dn.net/?f=F%20%3D%20%287.0%20%5C%20A%29%20%20%289.0%29%20%5Cbigg%20%5B%5Cdfrac%7B26%7D%7B3%7D%20%5Cbigg%20%5D%20%20%5Chat%20k)
F = 546 × 10⁻³ T/mT 
F = 0.546 
<h2>
Answer:</h2>
Abraham
<h2>
Explanation:</h2>
This story can be found in the bible, in Genesis 22. According to the story, the Lord tested Abraham's faith asking him to sacrifice Isaac his son in a mountain in the land of Moriah. Abraham traveled with his son three days until he found the place the Lord has established for the sacrifice. There, Abraham tied his son and laid him on the altar on top of a wood he had prepared. Abraham picked up a knife to kill his son as a sacrifice but the Lord called him from heaven saying: <em>"Do not hurt him in any way, for now I know that you truly fear God. You have not withheld from me even your son, your only son"</em>
Answer:
(a) 30 m/sec
(b) -50 m/sec
Explanation:
We have given initial velocity of ball u = 50 m/sec
Acceleration due to gravity 
(a) Time t = 2 sec
Now according to first equation of v = u-gt
So v=50-10×2=30 m/sec
(b) Time t = 10 sec
Now according to first equation of motion
So final velocity v = u-gt = 50-10×10 =-50 m/sec
Answer:
The correct option is: B that is 1/2 K
Explanation:
Given:
Two carts of different masses, same force were applied for same duration of time.
Mass of the lighter cart = 
Mass of the heavier cart = 
We have to find the relationship between their kinetic energy:
Let the KE of cart having mass m be "K".
and KE of cart having mass m be "K1".
As it is given regarding Force and time so we have to bring in picture the concept of momentum Δp and find a relation with KE.
Numerical analysis.
⇒
⇒ 
⇒ 
⇒ 
⇒ 
⇒ 
Now,
Kinetic energies and their ratios in terms of momentum or impulse.
KE (K) of mass m.
⇒
...equation (i)
KE (K1) of mass 2m.
⇒ 
⇒
...equation (ii)
Lets divide K1 and K to find the relationship between the two carts's KE.
⇒ 
⇒ 
⇒ 
⇒ 
⇒
⇒ 
The kinetic energy of the heavy cart after the push compared to the kinetic energy of the light cart is 1/2 K.