Mass of Co(NO₃)₂ = 1.95 g
V KOH = 0.350 L
[KOH] = 0.220 M
Kf = 5.0 x 10⁹
molar mass of Co(NO₃)₂ = 182.943 g/mol
so [Co(NO₃)₂] = 1.95 / (0.350 * 182.943) = 0.03045 M
[Co²⁺] = 0.03045 M
[OH⁻] = 0.22 M
chemical reaction:
Co²⁺(aq) + 4 OH⁻ ⇄ Co(OH)₄²⁻
I (M) 0.03045 0.22 0
C (M) - 0.03045 - 4 (0.03045) 0.03045
E (M) - x 0.22 - 4(0.03045) 0.03045
= 0.0982
Kf = [Co(OH)₄²⁻] / [Co⁺²][OH⁻]⁴
5.0 x 10⁹ = (0.03045) / x (0.0982)⁴
x = 6.5489 x 10⁻⁸
at equilibrium:
[Co²⁺] = 6.54 x 10⁻⁸
[OH⁻] = 0.0982 M
[Co(OH)₄²⁻] = 0.03045 M
Hi there!
p = e-3
s = f-1
f = i-7
d = g-5
Hope that helps!
Brady
Answer is: Ksp for silver sulfide is 8.00·10⁻⁴⁸.
Reaction
of dissociation: Ag₂S(s) → 2Ag⁺(aq) + S²⁻(aq)<span>.
</span>s(Ag₂S) = s(S²⁻) = 1.26·10⁻¹⁶ M.
s(Ag⁺) = 2s(Ag₂S) = 2.52·10⁻¹⁶ M; equilibrium concentration of silver cations.
Ksp = s(Ag⁺)² · s(S²⁻).
Ksp = (2.52·10⁻¹⁶ M)² · 1.26·10⁻¹⁶ M.
Ksp = 6.35·10⁻³² M² · 1.26·10⁻¹⁶ M.
Ksp = 8.00·10⁻⁴⁸ M³.
Volume fraction = volume of the element / volume of the alloy
Volume = density * mass
Base: 100 grams of alloy
mass of tin = 15 grams
mass of lead = 85 grams
volume = mass / density
Volume of tin = 15g / 7.29 g/cm^3 = 2.06 cm^3
Volume of lead = 85 g / 11.27 g/cm^3 = 7.54 cm^3
Volume fraction of tin = 2.06 cm^3 / (2.06 cm^3 + 7.54 cm^3) = 0.215
Volume fraction of lead = 7.54 cm^3 / (2.06 cm^3 + 7.54 cm^3) = 0.785
As you can verify the sum of the two volume fractions equals 1: 0.215 + 0.785 = 1.000
P=18000000/6 zeros. not sure how to do rest