Answer:
The amount of energy in molecules of matter determines the state of matter.
Explanation:
The amount of energy in molecules of matter determines the state of matter. Matter can exist in one of several different states, including gas, liquid, or solid-state.
The correct answer is the second option; sodium (Na) and potassium (K.)
Both sodium and potassium have the same number of valence electrons.
C ( Porcupines use there’s sharp quills to defend themselves from larger predators!)
Answer:
6.22 × 10⁻⁵
Explanation:
Step 1: Write the dissociation reaction
HC₆H₅COO ⇄ C₆H₅COO⁻ + H⁺
Step 2: Calculate the concentration of H⁺
The pH of the solution is 2.78.
pH = -log [H⁺]
[H⁺] = antilog -pH = antilog -2.78 = 1.66 × 10⁻³ M
Step 3: Calculate the molar concentration of the benzoic acid
We will use the following expression.
Ca = mass HC₆H₅COO/molar mass HC₆H₅COO × liters of solution
Ca = 0.541 g/(122.12 g/mol) × 0.100 L = 0.0443 M
Step 4: Calculate the acid dissociation constant (Ka) for benzoic acid
We will use the following expression.
Ka = [H⁺]²/Ca
Ka = (1.66 × 10⁻³)²/0.0443 = 6.22 × 10⁻⁵
There are two big advantages of using molarity to express concentration. The first advantage is that it's easy and convenient to use because the solute may be measured in grams, converted into moles, and mixed with a volume.
The second advantage is that the sum of the molar concentrations is the total molar concentration. This permits calculations of density and ionic strength