Answer:

Explanation:
In a beta (minus) decay, a neutron in a nucleus turns into a proton, emitting a fast-moving electron (called beta particle) alongside with an antineutrino.
The general equation for a beta decay is:
(1)
where
X is the original nucleus
Y is the daughter nucleus
e is the electron
is the antineutrino
We observe that:
- The mass number (A), which is the sum of protons and neutrons in the nucleus, remains the same in the decay
- The atomic number (Z), which is the number of protons in the nucleus, increases by 1 unit
In this problem, the original nucles that we are considering is iodine-131, which is

where
Z = 53 (atomic number of iodine)
A = 131 (mass number)
Using the rule for the general equation (1), the dauther nucleus must have same mass number (131) and atomic number increased by 1 (54, which corresponds to Xenon, Xe), therefore the equation will be:

Answer:
a) a = 6.1 m/s^2
b) a = 0.98m/s^2
Explanation:
Mass of slab = 40kg
Mass of block = 10kg
Coefficient of static friction (Us) = 0.60
Kinetic coefficient (UK) = 0.40
Horizontal force = 100N
The normal reaction from 40kg slab on 10 kg block = 10*9.81
= 98.1N
Static frictional force = Us*R
= 98.1*0.6
= 58.86N
This is less than the force applied
If 10 kg block will slide on the 40 kg slab, net force = 100 - kinetic force
Kinetic force (Uk*R) = 0.4*98.1
= 39.28N
= 39N
Net force = 100 -39
= 61N
Recall that F = ma
For 10 kg block
a = F/m
a = 61/10
a = 6.1m/s^2
b) Frictional force on 40 kg slab by 10 kg = 98.1*0.4
= 39.24
= 39N
F = ma
a = F/m
For 40kg slab
a = 39/40
a = 0.98m/s^2
The claim Anders is most likely to make is the failure of the manufacturer to warn about such risk.
<h3>What is a Risk?</h3>
This is defined as the possibility of something bad happening and in this case it is electric shock when dropped into the bathtub.
Anders can decide to sue for not warning against risk of electric shock when in contact with water.
Read more about Risk here brainly.com/question/1224221
If you are in plato the answer is B.