1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Viktor [21]
3 years ago
10

The high electrical conductivity of copper is an important design factor that helps improve the energy efficiency of electric mo

tors. This is important because motors and motor-driven systems are significant consumers of electricity, accounting for 43% - 46% of all global electricity consumption and 69% of all electricity used by industry. Inefficient motors waste electrical energy and are indirect contributors to greenhouse gas emissions. ElectroSpark, Inc. has been developing a new copper die-cast rotor technology specifically for premium efficiency motors, replacing the standard aluminum rotor. There are multiple reasons for doing so, including the possibility that the motor will consume less energy. They designed an experiment to test their idea in a common ¾ Horse power (HP) motor that is normally manufactured with an aluminum rotor. They designed a copper rotor that fit in their ¾ HP motor housing and ran a production line for a day producing the motors. They randomly selected 20 copper-rotor motors from that output and 20 aluminum-rotor motors produced from the same line the day before. These 40 motors were all run for 8 hours a day for 30 days and the energy consumed was measured in total Kilowatt Hours (example data below, using alpha=.05):
Copper: 560.145 539.673 556.834 559.873
Aluminium: 564.674 573.912 553.385 574.078
What is the correct hypothesis to test the problem described in this scenario?
A. H0: μD (copper-aluminum) ≥ 0; H1: μD (copper-aluminum) < 0
B. H0: μ_copper – μ_aluminum ≥ 0; H1: μ_copper – μ_aluminum < 0
C. H0: μD (copper-aluminum) ≥ 0; H1: μD (copper-aluminum) > 0
D. H0: μ_copper – μ_Aluminum ≤ 0; H1: μ_copper – μ_aluminum > 0
Engineering
1 answer:
ludmilkaskok [199]3 years ago
5 0

Answer:

B

Explanation:

This is a two sample t-test and not a matched pair t-test

null hypothesis(H0) will be that mean energy consumed by copper rotor motors is greater than or equal to mean energy consumed by aluminium rotor motors

alternate hypothesis(H1) will be that mean energy consumed by copper rotor motors is less than or equal to mean energy consumed by aluminium rotor motors.

So, option D is rejected

The hypothesis will not compare mean of differences of values of energy consumed by copper rotor motor and aluminium rotor motor.

Option A and C are also rejected

You might be interested in
A well-insulated tank in a vapor power plant operates at steady state. Saturated liquid water enters at inlet 1 at a rate of 125
kompoz [17]

Answer:

a. The mass flow rate (in lbm/s) is 135lbm/s

b. The temperature (in o F) is 200.8°F

Explanation:

We assume that potential energy and kinetic energy are negligible and the control volume operates at a steady state.

Given

a. The mass flow rate (in lbm/s) is 135lbm/s

b.

m1 = Rate at inlet 1 = 125lbm/s

m2 = Rate at inlet 2 = 10lbm/s

The mass flow rate (in lbm/s) is calculated as m1 + m2

Mass flow rate = 125lbm/s + 10lbm/s

Mass flow rate = 135lbm/s

Hence, the mass flow rate (in lbm/s) is 135lbm/s

b. To calculate the temperature.

First we need to determine the enthalpy h1 at 14.7psia

Using table A-3E (thermodynamics)

h1 = 180.15 Btu/Ibm

h2 at 14.7psia and 60°F = 28.08 Btu/Ibm

Calculating h3 using the following formula

h3 = (h1m1 + h2m2) / M3

h3 = (180.15 * 125 + 28.08 * 10)/135

h3 = 168.8855555555555

h3 = 168.89 Btu/Ibm

To get the final temperature; we make use of table A-2E of thermodynamics.

Because h3 < h1, it means the liquid is at a compressed state.

The corresponding temperature at h3 = 168.89 is 200.8°F

The temperature (in o F) is 200.8°F

6 0
3 years ago
(Signal Property) Under what condition is a discrete-time signal x[????] or a continuous-time signal x(????) periodic? Determine
Cloud [144]

Answer:

a. 2x/3

b. 8

Explanation:

fundamental period can be defined to mean that at after every period of 2π radians or 360° the value of graph is repeated. For such functions the fundamental period is the period after which they repeat themselves.

It van also be looked as The fundamental period of cos(θ) is 2π. That is (for example) cos(0) to cos(2π) represents one full period.

Please see attachment for the step by step solution.

7 0
3 years ago
It is known that the connecting rod AB exerts on the crank BCa 2.5-kN force directed down andto the left along the centerline of
monitta

Answer:

M_c = 61.6 Nm

Explanation:

Given:

F_a = 2.5 KN

Find:

Determine the moment of this force about C for the two casesshown.

Solution:

- Draw horizontal and vertical vectors at point A.

- Take moments about point C as follows:

                         M_c = F_a*( 42 / 150 ) *88

                         M_c = 2.5*( 42 / 150 ) *88

                         M_c = 61.6 Nm

- We see that the vertical component of force at point A passes through C.

Hence, its moment about C is zero.

6 0
3 years ago
Rafel knows that lessons learned is a valuable aid to future projects. When should he and his team address
Arada [10]

Answer: Create lessons learned at the end of the project.

Explanation:

Lessons learned are the experiences that are gotten from a project which should be taken into account for the future projects. Lesson learned are created at the end of the project.

The main objective of the lessons learned is that they show both the positive experience and the negative experience of a project and this will help the future projects that will be undertaken.

5 0
3 years ago
A heat pump with an ideal compressor operates between 0.2 MPa and 1 MPa. Refrigerant R134a flows through the system at a rate of
solmaris [256]

Answer:

The mass flow rate of refrigerant is 0.352 kg/s

Explanation:

Considering the cycle of an ideal heat pump, provided in the attachment, we first find enthalpy at state B and D. For that purpose, we use property tables of refrigerant R134a:

<u>At State A</u>:

From table, we see the enthalpy and entropy value of saturated vapor at 0.2 MPa. Therefore:

ha = 244.5 KJ/kg

Sa = 0.93788 KJ/kg.k

<u>At State B</u>:

Since, the process from state A to B is isentropic. Therefore,

Sb = Sa = 0.93788 KJ/Kg

From table, we see the enthalpy value of super heated vapor at 1 MPa and Sb. Therefore:

hb = 256.85 KJ/kg                          (By interpolation)

<u>At State C</u>:

From table, we see the enthalpy and entropy value of saturated liquid at 1 MPa. Therefore:

hc = 107.34 KJ/kg

Now, from the diagram it is very clear that:

Heat Loss = m(hb = hc)

m = (Heat Loss)/(hb - hc)

where,

m = mass flow rate = ?

Heat Loss = (180,000 Btu/hr)(1.05506 KJ/1 Btu)(1 hr/3600 sec)

Heat Loss = 52.753 KW

Therefore,

m = (52.753 KJ/s)/(256.85 KJ/kg - 107.34 KJ/kg)

<u>m = 0.352 kg/s</u>

5 0
3 years ago
Other questions:
  • Technician A says that you don’t need to use an exhaust extraction system when working on vehicles equipped with a catalytic con
    9·1 answer
  • An op-amp is connected in an inverting configuration with R1 = 1kW and R2 = 10kW, and a load resistor connected at the output, R
    9·1 answer
  • Nitrogen can be liquefied using a Joule-Thomson expansioni process. This is done by rapidlyl and adiabatically expandign cold ni
    15·1 answer
  • You are preparing to work with Chemical A. You open the appropriate storage cabinet, and notice Chemical B, as well as Chemical
    9·1 answer
  • 1. The area of the given triangle is 25 square units. What is the value of x?<br> X+2
    8·1 answer
  • When determining risk, it is necessary to estimate all routes of exposure in order to determine a total dose (or CDI). Recognizi
    8·1 answer
  • A power plant burns natural gas to supply heat to a heat engine which rejects heat to the adjacent river. The power plant produc
    11·1 answer
  • 5) /
    12·1 answer
  • The map shows the distribution of dairy farms across the lower 48 of the United States. Each dot on the map represents approxima
    11·1 answer
  • Most equipment is cooled by bringing cold air in the front and ducting the heat out of the back. What is the term for where the
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!