Answer:
first is the parentheses, (3+2)=5 next is the exponent 5^2=25, next is the division 5 / 5 = 1, then the multiplication 4*1=4 and then you add 4+25=29. so the answer is 29.
Answer and Explanation:
clear all; close all;
N=512;
t=(1:N)/N;
fs=1000;
f=(1:N)*fs/N;
x= sin(2*pi*200*t) + sin(2*pi*400*t);
y= sin(2*pi*200*t) + sin(2*pi*900*t);
for n = 1:20
a(n) = (2/N)*sum(x.*(cos(2*pi*n*t)))
b(n) = (2/N)*sum(x.*(sin(2*pi*n*t)))
c(n) = sqrt(a(n).^2+b(n).^2)
theta(n) =-(360/(2*pi))*atan(b(n)./a(n));
end
plot(f(1:20),c(1:20),'rd');
disp([a(1:4),b(1:4),c(1:4),theta(1:4)])
Answer:
point_dist = math.sqrt((math.pow(x2 - x1, 2) + math.pow(y2 - y1, 2))
Explanation:
The distance formula is the difference of the x coordinates squared, plus the difference of the y coordinates squared, all square rooted. For the general case, it appears you simply need to change how you have written the code.
point_dist = math.sqrt((math.pow(x2 - x1, 2) + math.pow(y2 - y1, 2))
Note, by moving the 2 inside of the pow function, you have provided the second argument that it is requesting.
You were close with your initial attempt, you just had a parenthesis after x1 and y1 when you should not have.
Cheers.
Hauling Vehicles that include a semitrailer manufactured prior to or in the model year of 2024, and registered in Illinois prior to January 1, 2025, having 5 axles with a distance of 42 feet or less between extreme axles, may not exceed the following maximum weights: 20,000 pounds on a single axle; 34,000 pounds