Answer:
a)
1) R16C ; Tn = 17 TMU
2) G4A ; Tn = 7.3 TMU
3) M10B5 ; Tn = 15.1 TMU
4) RL1 ; Tn = 2 TMU
5) R14B ; Tn = 14.4 TMU
6) G1B ; Tn = 3.5 TMU
7) M8C3 ; Tn = 14.7 TMU
8) P1NSE ; Tn = 10.4 TMU
9) RL1 ; Tn = 2 TMU
b) 3.1 secs
Explanation:
a) Determine the normal times in TMUs for these motion elements
1) R16C ; Tn = 17 TMU
2) G4A ; Tn = 7.3 TMU
3) M10B5 ; Tn = 15.1 TMU
4) RL1 ; Tn = 2 TMU
5) R14B ; Tn = 14.4 TMU
6) G1B ; Tn = 3.5 TMU
7) M8C3 ; Tn = 14.7 TMU
8) P1NSE ; Tn = 10.4 TMU
9) RL1 ; Tn = 2 TMU
b ) Determine the total time for this work element in seconds
first we have to determine the total TMU = ∑ TMU = 86.4 TMU
note ; 1 TMU = 0.036 seconds
hence the total time for the work in seconds = 86.4 * 0.036 = 3.1 seconds
Answer:
decreased
Explanation:
when impaired you react slower then you would sober.
Answer:
0.2 m/s
Explanation:
The velocity of a point on the edge of a disk rotating disk can be calculated as:
Where is the angular velocity and r the radius of the disk. This leads to:
Answer:
(4.5125 * 10^-3 kg.m^2)ω_A^2
Explanation:
solution:
Moments of inertia:
I = mk^2
Gear A: I_A = (1)(0.030 m)^2 = 0.9*10^-3 kg.m^2
Gear B: I_B = (4)(0.075 m)^2 = 22.5*10^-3 kg.m^2
Gear C: I_C = (9)(0.100 m)^2 = 90*10^-3 kg.m^2
Let r_A be the radius of gear A, r_1 the outer radius of gear B, r_2 the inner radius of gear B, and r_C the radius of gear C.
r_A=50 mm
r_1 =100 mm
r_2 =50 mm
r_C=150 mm
At the contact point between gears A and B,
r_1*ω_b = r_A*ω_A
ω_b = r_A/r_1*ω_A
= 0.5ω_A
At the contact point between gear B and C.
At the contact point between gears A and B,
r_C*ω_C = r_2*ω_B
ω_C = r_2/r_C*ω_B
= 0.1667ω_A
kinetic energy T = 1/2*I_A*ω_A^2+1/2*I_B*ω_B^2+1/2*I_C*ω_C^2
=(4.5125 * 10^-3 kg.m^2)ω_A^2
Explanation:
The invention of the pendulums driver ____ ao in the 1600s paved the way for a new industrial era. Add answer.