Answer:
d. We can calculate it by applying Newton's version of Kepler's third law
Explanation:
The measurements of a Star like the Sun have several problems, the first one is distance, but the most important is the temperature since as we get closer all the instruments will melt. This is why all measurements must be indirect because of the effects that these variables create on nearby bodies.
Kepler's laws are deduced from Newton's law of universal gravitation, in these laws the mass of the Sun affects the orbit of the planets since it creates a force of attraction, if measured the orbit and the time it takes to travel it we can know the centripetal acceleration and with it knows the force, from where we clear the mass of the son.
Let's review the statements of the exercise
.a) False. We don't have good enough models for this calculation
.b) False. The size of the sun is very difficult to measure because it is a mass of gas, in addition the density changes strongly with depth
.c) False. The amount of light that comes out of the sun is not all the light produced and is due to quantum effects where the mass of the sun is not taken into account
.d) True. This method has been used to calculate the mass of the sun and the other planets since the variable distance and time are easily measured from Earth
Correct answer is D
The Electric field is zero at a distance 2.492 cm from the origin.
Let A be point where the charge
C is placed which is the origin.
Let B be the point where the charge
C is placed. Given that B is at a distance 1 cm from the origin.
Both the charges are positive. But charge at origin is greater than that of B. So we can conclude that the point on the x-axis where the electric field = 0 is after B on x - axis.
i.e., at distance 'x' from B.
Using Coulomb's law,
,
= 



k is the Coulomb's law constant.
On substituting the values into the above equation, we get,

Taking square roots on both sides and simplifying and solving for x, we get,
1.67x = 1+x
Therefore, x = 1.492 cm
Hence the electric field is zero at a distance 1+1.492 = 2.492 cm from the origin.
Learn more about Electric fields and Coulomb's Law at brainly.com/question/506926
#SPJ4
Answer:
10 N
Explanation:
F = ma = m(Δv/t) = 5.0(10.0 - 0)/5.0 = 10 N
I) You walk barefoot on the hot street and it burns your toes.
The road is in direct contact with your skin. Thermal energy from the road will transfer to the bottom of your feet, then to the rest of your body. This is an example of conduction.
II) When you get into a car with hot black leather in the middle of the summer and your skin starts to get burned.
Just like in the previous example, the hot leather is in direct contact with your skin (I guess if you're going to drive naked). Thermal energy from the leather will transfe to your skin, then to the rest of your body. This is also conduction.
III) A flame heats the air inside a hot air balloon and the balloon rises.
The flame heats air directly at the bottom of the balloon. The warm air expands and becomes less dense. This will rise and let the unheated, denser air in the balloon fall down toward the flame. This is an example of the convection cycle.
IV) A boy sits to the side of a campfire. He is 10 feet away, but still feels warm.
The campfire heats air directly nearby. The warm air expands and moves away from the fire in all directions, leaving behind unheated, denser air to be heated up. Some of the warm air reaches the boy. This is another example of convection.
The answer is A) 1 and 2.