The vector perpendicular to the plane of A = 3i+ 6j - 2k and B = 4i-j +3k is 16 i - 17 j - 27 k
Let r be the vector perpendicular to A and B,
r = A * B
A = 3i + 6j - 2k
B = 4i - j + 3k
a1 = 3
a2 = 6
a3 = - 2
b1 = 4
b2 = - 1
b3 = 3
a * b = ( a2 b3 - b2 a3 ) i + ( a3 b1 - b3 a1 ) j + ( a1 b2 - b1 a2 ) k
a * b = [ ( 6 * 3 ) - ( - 1 * - 2 ) ] i + [ ( - 2 * 4 ) - ( 3 * 3 ) ] j + [ ( 3 * - 1 ) - ( 4 * 6 ) ] k
a * b = 16 i - 17 j - 27 k
The perpendicular vector, r = 16 i - 17 j - 27 k
Therefore, the vector perpendicular to the plane of A = 3i + 6j - 2k and B = 4i - j + 3k is 16 i - 17 j - 27 k
To know more about perpendicular vectors
brainly.com/question/14384780
#SPJ1
B. It's randomness would increase
Because the Second Law of Thermodynamics states that as energy is transferred or transformed, more and more of it is wasted. It also states that there is a natural tendency of any isolated system to degenerate into a more disordered state.
To solve this problem we will apply the theorem given in the conservation of energy, by which we have that it is conserved and that in terms of potential and kinetic energy, in their initial moment they must be equal to the final potential and kinetic energy. This is,
Replacing the 5100MJ for satellite as initial potential energy, 4200MJ for initial kinetic energy and 5700MJ for final potential energy we have that
Therefore the final kinetic energy is 3600MJ
Answer:
800 meters per hour
Explanation:
800 meters per hour is the average speed of an airplane that travels from New York to Los Angeles, a total distance of 4800 km, in 6.0 hours.
Metallic bonds! Hope this helps!! :))