The chocolate softens and melts as it absorbs the microwaves, and it makes a mess.
Answer:
(a) 135 kV
(b) The charge chould be moved to infinity
Explanation:
(a)
The potential at a distance of <em>r</em> from a point charge, <em>Q</em>, is given by

where 
Difference in potential between the points is
![kQ\left[-\dfrac{1}{0.2\text{ m}} -\left( -\dfrac{1}{0.1\text{ m}}\right)\right] = \dfrac{kQ}{0.2\text{ m}} = \dfrac{9\times10^9\text{ F/m}\times3\times10^{-6}\text{ C}}{0.2\text{ m}}](https://tex.z-dn.net/?f=kQ%5Cleft%5B-%5Cdfrac%7B1%7D%7B0.2%5Ctext%7B%20m%7D%7D%20-%5Cleft%28%20-%5Cdfrac%7B1%7D%7B0.1%5Ctext%7B%20m%7D%7D%5Cright%29%5Cright%5D%20%3D%20%5Cdfrac%7BkQ%7D%7B0.2%5Ctext%7B%20m%7D%7D%20%3D%20%5Cdfrac%7B9%5Ctimes10%5E9%5Ctext%7B%20F%2Fm%7D%5Ctimes3%5Ctimes10%5E%7B-6%7D%5Ctext%7B%20C%7D%7D%7B0.2%5Ctext%7B%20m%7D%7D)

(b)
If this potential difference is increased by a factor of 2, then the new pd = 135 kV × 2 = 270 kV. Let the distance of the new location be <em>x</em>.
![270\times10^3 = kQ\left[-\dfrac{1}{x}-\left(-\dfrac{1}{0.1\text{ m}}\right)\right]](https://tex.z-dn.net/?f=270%5Ctimes10%5E3%20%3D%20kQ%5Cleft%5B-%5Cdfrac%7B1%7D%7Bx%7D-%5Cleft%28-%5Cdfrac%7B1%7D%7B0.1%5Ctext%7B%20m%7D%7D%5Cright%29%5Cright%5D)



The charge chould be moved to infinity
Answer:0.27
Explanation:
Given
One worker Pushes with force 
other Pulls it with a rope of rope 
mass of crate 
both forces are horizontal and crate slides with a constant speed
Both forces are in the same direction so Friction will oppose the forces and will be equal in magnitude of sum of two forces because crate is moving with constant speed i.e. net force is zero on it

where
is the friction force



where
is the coefficient of static friction



Answer:
The image distance is 17.56 cm
Explanation:
We have,
Height of light bulb is 3 cm.
The light bulb is placed at a distance of 50 cm. It means object distance is, u =-50 cm
Focal length of the lens, f = +13 cm
Let v is distance between image and the lens. Using lens formula :

So, the image distance is 17.56 cm.