If the speed of the magnet is doubled, the induced voltage is twice as great
Faraday's law of induction states that whenever relative motion exists between a coil and magnetic field, a voltage will induce in the circuit and this voltage is proportional to the rate of change of the flux. The expression for the motional emf is as follows:
ε=Blv
Here, ε is the motional emf, B is the magnetic field, l is the length of the conductor, and v is the velocity at which the magnetic field changes.
The induced voltage by the moving magnet is directly proportional to the speed of the magnet. Therefore, an increase in the speed of the magnet will increase the induced voltage.
If the speed of the magnet is doubled, the induced voltage is twice as great
Find out more at: brainly.com/question/13369951